

Carmen and Adriana are farmers who sell products in bulk at the market.
A. Many businesses buy supplies in bulk. Why do you think they do this?
\qquad
\qquad
B. What would be an advantage and a disadvantage to buying things in bulk?
\qquad
\qquad
\qquad

Getting Stiarted

Hint
A percent is a fraction out of 100.

1. Write each percent as a decimal.
a) $25 \%=$ \qquad
d) $7 \%=$ \qquad
b) $15 \%=$ \qquad
e) $1.5 \%=$ \qquad
c) $47 \%=$ \qquad f) $12.5 \%=$ \qquad
2. Calculate.
a) 25% of $500=$ \qquad
d) 35% of $300=$ \qquad
b) 6% of $35.50=$ \qquad e) 2.5% of $50=$ \qquad
c) 10% of $1650=$ \qquad f) 0.5% of $29=$ \qquad
3. Write each decimal as a percent.
a) $0.65=$ \qquad d) $0.04=$ \qquad
b) $0.12=$
e) $0.055=$ \qquad
c) $0.1=$ \qquad f) $0.002=$
4. Write each fraction as a percent. Round to the nearest tenth.
a) $\frac{2}{5}=$ \qquad
c) $\frac{1}{3} \doteq$ \qquad
b) $\frac{5}{8}=$ \qquad d) $\frac{4}{3}=$ \qquad
5. Complete the chart.

Fraction	Decimal	Percent
	0.25	
		30%
$\frac{4}{5}$		
$\frac{9}{8}$		
	1.23	
		5.9%

6. Calculate the total cost of each item, including GST. To determine GST, calculate 5% of the price.
a) MP3 player for $\$ 79.99$

GST: $\$ 79.99 \times$ \qquad $=\$$ \qquad
Total: $\$ 79.99+\$$ \qquad $=\$$ \qquad
b) laptop for $\$ 549.99$

GST:
Total:
7. Calculate.
a) $\frac{1}{4}$ of $500=$ \qquad d) $\frac{3}{5}$ of $300=$ \qquad
b) $\frac{1}{3}$ of $30=$ \qquad
e) $\frac{1}{5}$ of $200=$ \qquad
c) $\frac{1}{10}$ of $1650=$ \qquad f) $\frac{1}{2}$ of $29=$ \qquad
8. Suppose you have a coupon for 10% off a meal. Calculate the price of each meal.
a) total: $\$ 56.98$

$$
\begin{aligned}
& \$ 56.98-(10 \% \text { of } \$ 56.98) \\
& =\$ 56.98-\$- \\
& =\$
\end{aligned}
$$

b) total: $\$ 19.57$
$\$ 19.57$ - (10% of $\$ 19.57$)

$$
\begin{aligned}
& =\$ 19.57-\$ \\
& =\$
\end{aligned}
$$

\qquad

Hint

GST stands for Goods and Services Tax. Some provinces have an additional provincial sales tax called PST. Some provinces combine the PST and GST and charge a harmonized sales tax, HST.

9. Sasha likes to tip 15% on the cost of services.

Estimate the tip on each purchase.
a) hair cut: $\$ 68 \quad 15 \%$ of $\$ 68=(10 \%$ of $\$ 68)+(5 \%$ of $\$ 68)$

$$
\begin{aligned}
& \doteq \$ _\quad+\$ ـ \\
& \doteq \$ ـ
\end{aligned}
$$

b) taxi fare: $\$ 23$

$$
\begin{aligned}
15 \% \text { of } \$ 23 & =(10 \% \text { of } \$ 23)+(5 \% \text { of } \$ 23) \\
& \doteq \$ \\
& \doteq \$
\end{aligned}
$$

Calculating Unit Price

i) $\$ 15.90 \div 5=\$$ \qquad
ii) $(\$ 12.00+\$ 9.00+\$ 21.00) \div 4=\$$ \qquad

Heidi sells cleaning products in bulk at her store. She puts the liquid in large containers and customers can fill their own bottles. How should Heidi display the unit price for a cleaner that sells for $\$ 115$ for 25 L?
(1) Calculate the price for each quantity.

Price per litre: $\$ 115 \div 25 \mathrm{~L}=\$$ \qquad /L
Price per 500 mL : \$ \qquad $/ L \div 2=\$$ \qquad $/ 500 \mathrm{~mL}$

Price per 100 mL : \$ \qquad $/ L \div$ \qquad = \$ \qquad $/ 100 \mathrm{~mL}$
(2) Should Heidi display the price per litre, per 500 mL , or per 100 mL ? Why?
\qquad
\qquad
\qquad

REFLECTING
When might it be useful to know the unit price of items?

Example

Rama advertises bananas for $\$ 1.99$ per kilogram. Is this more or less than 59 a pound?

Solution

A. What relationship can you use to determine the unit cost per pound of the bananas?
1 pound $\doteq 0.45 \mathrm{~kg}$
\$ \qquad $/ \mathrm{kg} \times$ \qquad $\mathrm{kg} / \mathrm{lb} \doteq \$$ \qquad /lb
B. Is $\$ 1.99 / \mathrm{kg}$ more or less than $59 ¢$ a pound? \qquad

Practice

1. Calculate each unit price.
a) 12 eggs for $\$ 3.24$
\$ \qquad per egg
c) $\$ 23.90$ for 1 kg of pecans \$ \qquad /100 g
b) $\$ 35.16$ for 40 L of gas
\$ \qquad /L or \qquad ¢/L
d) $\$ 23.90$ for 1 kg of pecans about \$ \qquad per pound
2. Raymond needs to order crushed rock for a courtyard. What is the cost of 4.5 t at $\$ 12.50$ per tonne?
3. One brand of salsa is $\$ 5.95$ for 650 mL and another is $\$ 4.10$ for 350 mL .
a) What is the price per millilitre for each brand?
b) What is the price per 100 mL for each brand?
4. Lise labels her meat prices per pound. Jordan labels his meat prices per kilogram. Calculate the equivalent unit price for
 each.

Rib steak
Sirloin roast
\$8.80/lb
\$ \qquad /lb
\$ \qquad /kg
\$7.59/kg
5. Tanya found these prices for tomato juice:
A: 1.89 L for $\$ 3.99$
B: 750 mL for $\$ 2.99$
C: 250 mL for $89 ¢$
Which size sells for the lowest unit price?

6.2

Determining the Best Buy

i) $\$ 52 \div 5=\$$ \qquad
iii) $\$ 468 \div 18=\$$ \qquad
ii) $\$ 6.25 \div 12=\$$ \qquad iv) $\$ 899 \div 4=\$$ \qquad

Indie is an interior designer. She is choosing fabric for curtains for her client's living room.

- Linen at $\$ 38.25$ for 3 yards
- Cotton at $\$ 60.00$ for 8 yards

Which fabric has the lower unit price?
(1) What is the price per yard for each fabric?

Linen: $\$ 38.25 \div 3$ yards $=\$$ \qquad per yard
Cotton: \$ \qquad \div \qquad yards = \$ \qquad per yard
(2. Which fabric has the lower unit price? \qquad
(3) What other factors might Indie consider when buying fabric?
\qquad
\qquad

Example

Osmani is a tour operator. He offers two types of tours of Banff.

- Deluxe Tour offers 90 min of sightseeing for $\$ 36$.
- Supreme Tour offers 4 h of sightseeing for $\$ 84$.

Which tour offers a better price per hour?

Hint

Remember to compare units that are the same.

REFLECTING

Why is the lower unit price sometimes not the best option?

Solution

A. Deluxe Tour unit price: $90 \mathrm{~min}=$ \qquad h \$36 \div \qquad $\mathrm{h}=\$$ \qquad /h
Supreme Tour unit price: $\$ 84 \div$ \qquad $h=\$$ \qquad /h
B. Which tour offers the better price per hour?

Practice

1. Determine the lower unit price.
a) 2000 nails for $\$ 54.99$ or 5000 nails for $\$ 119.99$
b) Swiss cheese at $\$ 4.59$ for 170 g or havarti at $\$ 2.29 / 100 \mathrm{~g}$
c) Yogurt: 650 g for $\$ 2.99$ or 800 g for $\$ 5.59$
d) Roast chicken at $\$ 2.29 / 100 \mathrm{~g}$ or ham at $\$ 3.29 / 175 \mathrm{~g}$
e) 3.78 L of house paint for $\$ 39.95$ or 237 mL for $\$ 6.49$
2. Candace needs to replace two of her winter tires. She finds the following prices.

- Main Street Tire: 1 tire for $\$ 82.15$
- Tom's Automotive Shop: 2 tires for $\$ 140.56$

Which store offers the better price for Candace?
3. Henry needs a small amount of paint for a bathroom wall. He can pay either $\$ 32.97$ for 3.8 L of paint or $\$ 15.49$ for 950 mL . Which would be the better buy? Explain your thinking.
4. Carol-Hui is buying orange juice. Which has the better unit price?

- Concentrated orange juice: $\$ 1.85$ for 355 mL ; mix with 3 cans (355 mL each) of water to serve
- Ready-to-serve orange juice: $\$ 2.99$ for 1.89 L

5. Vince wants to hire a contractor to finish his basement. He got quotes from two companies.

Company name	Experience	Customer satisfaction	Hourly rate	Estimated time	Cost of supplies
Frank \& Sons Contractors	well-known and experienced	98%	$\$ 70 / \mathrm{h}$	24 h	$\$ 2000$
Design and Build Team	new to the business	79%	$\$ 50 / \mathrm{h}$	28 h	$\$ 2200$

a) What would each company charge in total?
b) Which would be the better option? Explain your thinking.
\qquad
\qquad
\qquad
6. Which is the better unit price?
a) pop at $\$ 1.99$ for 2 L or $55 申$ for 355 mL
b) beef at $\$ 4.99 / \mathrm{lb}$ or $\$ 8.50 / \mathrm{kg}$
7. Jayden is a flooring installer. He provides the information below for a client trying to decide what kind of flooring to use.

Type of flooring	Warranty	Unit price	Amount needed
ceramic tile	lifetime	$\$ 6.36 /$ tile	120 tiles
laminate tile	10 years	$\$ 54.01 /$ box	13 boxes

a) Calculate the total price for each type of flooring.
b) Which type of flooring do you think the client should choose? Explain your thinking.
\qquad
\qquad
\qquad
8. Corey buys his engine oil online. Which is a better unit price? 3 US gallons for $\$ 35.95$ or 5 L for $\$ 29.95$

Hint

Remember to use the same units. Use the charts inside the back cover.
9. a) What are some factors to consider when looking for the best buy?
\qquad
\qquad
\qquad
b) Is the cheaper option always the best buy? Explain your thinking.
\qquad
\qquad
\qquad

6.3

Calculating Discounts and Increases

$$
\text { i) } 25 \% \text { of } \$ 800=\$
$$

ii) 80% of $\$ 1500=\$$ \qquad

Hilda needs to make room for the summer line in her clothing store. She needs to calculate sale prices for her existing stock and set prices for her new arrivals.
(1) How much will she charge for an $\$ 80$ pair of jeans with a discount of 25% ?
Discount: \$80× \qquad $=$ \$ \qquad
Sale price: \$ \qquad - \$ \qquad = \$ \qquad
2 Hilda bought a new line of jeans for $\$ 42.50 /$ pair. She will mark them up by 48%. What will she charge for the jeans?
Mark up: $\$ 42.50 \times$ \qquad = \$ \qquad
Ticket price: \$ \qquad + \$ \qquad $=\$$ \qquad
(3) What profit will Hilda make for each pair of jeans sold?

Hilda will make \$ \qquad in profit for each pair of jeans sold.

Example 1

Owen is offering a discount on an apartment of $\frac{1}{5}$ off the first month's rent of $\$ 1200$. What will the first month's rent be?

Solution 1

Calculate the cost by first calculating the discount amount.
Discount: $\quad \$ 1200 \times \ldots \quad=\$$
First month's rent: \$1200 - \$ \qquad = \$ \qquad

Solution 2

Calculate the cost in one step.
$\frac{1}{5}$ (or 20%) off means $\frac{4}{5}$ (or 80%) of the original price.

REFLECTING

Which do you prefer, Solution 1 or Solution 2? Why?

First month's rent: \$1200× \qquad $=\$$ \qquad

Example 2

Ben bought a house for $\$ 265000$. After one year, it increased in value by 4%. What was the value of Ben's house after one year?

Solution

$\$ 265000 \times(1.00+$ \qquad $J=\$ 265000 \times$ \qquad

$$
=\$
$$

Example 3

Aida paid $\$ 693$ wholesale for mirrors that sell for $\$ 990$ retail. What discount was she given?

Solution

A. What percent of the original price is the sale price?
$\frac{\text { sale price }}{\text { original price }}=$ percent of original price

\qquad , or \qquad \%
B. What is the discount? 100\% - \qquad $\%=$ \qquad \%

Practice

Hint

If you include 1.00 in the equation, you can skip the step where you add the increase to the original price.

REFLECTING

What could be a general rule for figuring out an increased price in a single calculation?

1. Complete the chart for these sales offers.

Item	Original price	Discount	New price
computer	$\$ 679.99$	15%	
newspaper ad	$\$ 500.00$	$\frac{1}{4}$ off	
snowboard	$\$ 455.95$	60%	
shoes	$\$ 72.95$	20%	

2. Seo Ho is opening a new restaurant and needs to buy plates.

- Supplier 1: 300 plates for $\$ 3400$
- Supplier 2: 300 plates for $\$ 4000$ and a 10% discount Which supplier is offering the better price?

3. Complete the chart for these salary increases.

Name	Original salary	Percent increase	New salary
Carrie	$\$ 52000$	7%	
Gerry	$\$ 44500$	2%	
Sandra	$\$ 108200$	3.5%	
Andrew	$\$ 82300$	4.5%	

4. In one year, prices in Canada's housing market increased by 5.2%. If a house sold for $\$ 335576$ at the beginning of that year, what could it sell for at the end of that year?

5. Alysha restored an old motorcycle. She paid $\$ 26000$, spent $\$ 3500$ on repairs, and sold it for $\$ 37000$. What percent profit did she make?
6. Zoe is opening an organic greenhouse. She paid $\$ 130$ wholesale for gardening tools worth $\$ 200$ retail. What was the percent discount for the tools she bought?

Mid-Chapter Review

1. Calculate the unit cost for 100 g .
a) cheese at $\$ 12.80 / \mathrm{kg}$
b) sausage at $\$ 2.89$ for 375 g
2. Olivia is buying equipment for her wholesale bakery.
a) She can get two mixers for $\$ 3396$ or three mixers for $\$ 4794$. Which option is the lower unit price?
b) What factors other than price might Olivia consider when buying mixers?
3. Koli sells 2 kg of frozen turkey breasts for $\$ 32.55$ and 300 g of fresh turkey breasts for $\$ 7.89$. Which is the lower unit price?
4. Calculate each sale price.
a) 35% off $\$ 780$
b) $\frac{1}{3}$ off $\$ 780$
c) 5% off $\$ 198$
d) 12.5% off $\$ 36$
5. Peter is a locksmith. After he ran ads in the newspaper, his company's sales increased by 4.2% from the previous year. His sales were $\$ 206890$ the previous year. What were his sales after the ads ran?

Analyzing Sales Promotions

i) $2.5 \times \$ 1.95=\$$ \qquad iii) 80% of $\$ 1200=\$$ \qquad
ii) $4 \times \$ 9.50+\$ 20=\$$ \qquad iv) 20% off $\$ 1200=\$$ \qquad

Jack is buying plywood for his cabinetmaking business. Two lumberyards sell $\frac{3}{4}$ inch oak plywood for $\$ 79.98$ a sheet, but they offer different promotions.

- Promotion 1: spend more than $\$ 500$ and get $\$ 100$ off
- Promotion 2: 15% discount off entire purchase

Which promotion is better for Jack if he needs 8 sheets? if he needs 16 sheets?
(1) If Jack needs 8 sheets of plywood to make new cabinets, which promotion will save him the most money?
$\$ 79.98 \times 8$ sheets $=\$$ \qquad
Promotion 1: \$ \qquad $-\$$ \qquad $=\$$ \qquad
Promotion 2: \$ \qquad \times \qquad $=\$$ \qquad
Promotion \qquad saves Jack the most money if he buys 8 sheets.
(5) If Jack wanted to buy 16 sheets of plywood, which option would save him the most money?
$\$ 79.98 \times 16$ sheets $=\$$ \qquad
Promotion 1: \$ \qquad $-\$$ \qquad = \$ \qquad
Promotion 2: \$ \qquad \times \qquad = \$ \qquad
Promotion \qquad saves Jack the most money if he buys 16 sheets.

Example

Kristin is buying six watches as gifts for her friends. The store has two promotions to choose from for watches with a regular price of \$12 each.

- The real deal: buy one, get one half price
- The big discount: $\frac{1}{3}$ off the purchase Which promotion should Kristin choose?

Solution

Calculate the price for each promotion.
The real deal: $\$ 12 \times 3+\$$ \qquad $\times 3=\$$ \qquad
The big discount: $\$ 12 \times 6-\frac{1}{3}(\$ 12 \times 6)=\$$ \qquad
Kristin should choose the big discount.

Practice

1. Nikki needs eight new sets of linens for her massage therapy business. She checks out the sales at two different stores.

- Bedding \& More: buy 1 get 1 free; regular price $\$ 32.50 /$ set - Lydia's Linens: 40% off regular price of $\$ 26.49$

REFLECTING

What other types of sales promotions have you seen?
a) How much do eight sets of linens cost at each store?
b) Which store offers the better price? \qquad
2. Allison is a freelance graphic designer. She needs to buy a new computer for her business. Two stores offer promotions on the same computer.

- $\$ 2899$ with a discount of 20%
- $\$ 2779$ with a $\$ 250$ mail-in rebate Which is the better price?

3. Troy is going to a technical school in the fall and needs to rent an apartment. He finds two apartments that he likes.

- Apt. 1: $\$ 700 /$ month $+\frac{1}{2}$ month's rent for a damage deposit
- Apt. 2: $\$ 775 /$ month with the first month free
a) If Troy needs the apartment for 12 months, which apartment would be less expensive?
b) If Troy needed the apartment for 24 months, which apartment would be less expensive?

4. Ngor needs to rent a vehicle to drive from Invermere, British Columbia, to Lethbridge, Alberta, and back. The total distance for the round trip is 607 km and will take two days.

- RentCar: $\$ 45.99 /$ day with unlimited mileage
- Car Bud: $\$ 15.85 /$ day plus $\$ 0.12 / \mathrm{km}$
a) Which option seems less expensive, without calculating unit prices? Why?
b) Which option is best for Ngor's situation?
c) If Ngor's trip only took one day, which option would be less expensive?

Solving a Money Puzzle

Stephen wants to purchase a new hybrid car.

- The base price of the car is $\$ 27800$.
- He would like to purchase the premium package with solar panels for $\$ 3835$, leather seats for $\$ 1890$, and a remote car starter for \$632.
- GST is 5% of the total purchase price.

Stephen has gone to three different dealerships. Each dealership has a different promotion.

- Dalia's Dealership: dealer pays the GST (5\%) on the purchase price
- Dan's Dealership: manufacturer offers a 1% price reduction and a rebate of $\$ 2000$
- Drake's Dealership: dealer offers a 1.5% price reduction and $\$ 1500$ in fuel vouchers
A. Which dealership offers the lowest price?
B. Which offer is best for the dealership? Why?

6.6

Currency Exchange


```
i) 1.987 \times$20=$
```

\qquad

``` ii) \(\$ 500 \times 0.6789=\$\)
``` \(\qquad\)
iii) \(\$ 2000 \times 0.9671=\$\) \(\qquad\)
iv) \(\$ 89 \times 0.146=\$\) \(\qquad\)
rate of exchange the amount that money is worth from one currency to another. This varies daily.

\section*{Hint}

To use the currency chart, find the column for the currency you're starting with. Then go down that column to find the exchange rate for the currency you want to convert to.

Trevor will be travelling to the WorldSkills Competition in London, England. He needs to convert his Canadian dollars (C\$) to British pounds (\(£\)). To find the latest rate of exchange, Trevor checks an online currency converter.
(1) For every C \(\$ 1\), Trevor would receive \(£ 0.607\). How many British pounds (\(£\)) will he get for \(\mathrm{C} \$ 500\) ?
Amount in \(\mathrm{C} \$ \times\) exchange rate \(=\) amount in \(£\)
C\$ \(\qquad\) \(\times £ 0.607 / C \$ \doteq £\) \(\qquad\)
(2) If Trevor wants to take \(£ 500\), how much will that cost in Canadian dollars?
\(\mathrm{C} \$ \times £ 0.607 / \mathrm{C} \$ \doteq £ 500\)
£500 \(\div £ 0.607 / \mathrm{C} \$=\mathrm{C} \$\) \(\qquad\)

Currency exchange rates change every day. Here is a sample.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Canadian dollar (\$) & US dellar (\$) & Euro (G) & British pound (ع) & Japanese yen (7) & Mexican peso (\$) & Chinese yuan (7) \\
\hline Canadian dollar (\$) & 1.000 & 1.035 & 1.482 & 1.650 & 0.011 & 0.081 & 0.152 \\
\hline US dollar (\$) & 0.967 & 1.000 & 1.431 & 1.594 & 0.012 & 0.078 & 0.146 \\
\hline Euro (\(€\)) & 0.676 & 0.699 & 1.000 & 1.114 & 0.008 & 0.055 & 0.102 \\
\hline British pound (E) & 0.607 & 0.627 & 0.898 & 1.000 & 0.007 & 0.049 & 0.092 \\
\hline Japanese yen (*) & 90.198 & 93.185 & 133.388 & 148.55 & 1.000 & 7.303 & 13.638 \\
\hline Mexican peso (\$) & 12.340 & 12.760 & 18.265 & 20.341 & 0.137 & 1.000 & 1.867 \\
\hline Chinese yuan (7) & 6.602 & 6.833 & 9.781 & 10.893 & 0.073 & 0.536 & 1.000 \\
\hline
\end{tabular}

\section*{Example 1}

Danielle wants to travel to buy textiles. She has \(\$ 2000\) Canadian. What is that amount worth in Chinese yuan (\(¥\)), Japanese yen (\(¥\)), and euros \((€)\) ?

\section*{Solution}
A. What is \(\mathrm{C} \$ 2000\) worth in Chinese yuan (CN\#)?
\(C \$ 1 \doteq ¥\) \(\qquad\)
C \(\$ 2000 \times ¥\) \(\qquad\) \(/ C \$ \doteq C N ¥\) \(\qquad\)

\section*{REFLECTING}

Why would it be important to know the exchange rate of the country you are travelling to before you get there?

\section*{Example 2}

Danielle has \(€ 420\) left after travelling to Europe and wants to go to Mexico. What is \(€ 420\) worth in Mexican pesos (MX\$)?

\section*{Solution}
\(€ 1 \doteq M X \$\) \(\qquad\)
\(€ 420 \times \mathrm{MX} \$\) \(\qquad\) \(/ € \doteq M X \$\)

\section*{Practice}
1. Determine the equivalent for each exchange.
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c}
Starting \\
currency
\end{tabular}} & Amount & Convert to & \begin{tabular}{c}
Exchange \\
rate
\end{tabular} & Amount \\
\hline \begin{tabular}{l}
Canadian \\
dollar
\end{tabular} & C\$1 & US dollars & & \\
\hline Euro & €1 & Canadian dollars & & \\
\hline Mexican peso & MX\$1 & British pounds & & \\
\hline Japanese yen & JP¥1 & Chinese yuan & & \\
\hline US dollar & US\$1 & Mexican pesos & & \\
\hline British pound & E1 & Japanese yen & & \\
\hline Chinese yuan & CN¥1 & Euros & & \\
\hline
\end{tabular}
2. Pierre is going on a work exchange program in Europe. He can fly from Paris, France, to Athens, Greece, for €187. What would his flight cost in Canadian dollars?
3. Determine the equivalent for each exchange.
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c}
Starting \\
currency
\end{tabular}} & Amount & Convert to & \begin{tabular}{c}
Exchange \\
rate
\end{tabular} & Amount \\
\hline \begin{tabular}{l}
Canadian \\
dollars
\end{tabular} & C \(\$ 300\) & US dollars & & \\
\hline Euros & \(€ 689\) & Canadian dollars & & \\
\hline Mexican pesos & MX \(\$ 35\) & British pounds & & \\
\hline Japanese yen & JP¥2700 & Chinese yuan & & \\
\hline US dollars & US\$25 & Mexican pesos & & \\
\hline British pounds & \(£ 540\) & Japanese yen & & \\
\hline Chinese yuan & CN¥99 & Euros & & \\
\hline
\end{tabular}
4. Sebastian is shopping in Spain and wonders if a sweater priced at \(€ 45\) is reasonable compared with a similar \(\$ 30\) sweater he bought in Nelson, British Columbia. Compare the prices.
5. Amanda is travelling to Haiti to help build a health care clinic. She is taking \(\$ 500\) Canadian to exchange for Haitian gourdes. How much is C \(\$ 500\) worth in Haitian gourdes (HTG)? \(\mathrm{C} \$ 1 \doteq 37.5858\) gourdes (HTG)
6. Tessa is comparing the price of books online. At a Canadian store, one book costs \(\mathrm{C} \$ 20.49\). At an American store, the same book costs US\$18.95. Which price is less?
7. On a trip to California, Tara spent the amounts below. Express these prices in Canadian dollars.
Breakfast \(\qquad\)
8. Julia bought oranges for \(€ 1.99\) per kilogram at a market in Germany. She wondered how this compared to the price of oranges in Red Deer, Alberta, at 79¢ per pound.
a) What is the price of \(€ 1.99 / \mathrm{kg}\) in euros per pound?
b) What is the price in Canadian dollars per pound?
c) Where are the oranges less expensive?
9. Elijah and his family travelled to China. Before they left, they exchanged \(\$ 3600\) Canadian for Chinese yuan.
a) What is the value of \(C \$ 3600\) in yuan (CN\#)?
b) While in China, they spent CN¥20 419. They exchanged the remainder back to \(\mathrm{C} \$\). What is the value in \(\mathrm{C} \$\) ?
10. Marco is a landscape gardener. He is travelling to learn more about English and Japanese gardens. When he left England, he had £350. What is this worth in Japanese yen?

\section*{6.7}

\section*{Estimating Currency Exchange}

i) \(0.5 \times \$ 2200=\$\) \(\qquad\) iii) \(1.5 \times \$ 400=\$\) \(\qquad\)
ii) \(0.1 \times \$ 4200=\$\) \(\qquad\) iv) \(2.5 \times \$ 20=\$\) \(\qquad\)

Akai needs to create budgets for her business trips. What numbers can she use to estimate without using a calculator?

\section*{Hint}

To estimate the value of Canadian dollars in yen, multiply by 100. To estimate an amount in yen in \(C \$\), divide by 100.

\section*{Hint}

You can use mental math when calculating \(300 \times 1.5\). Just take half of 300 and add it to 300 .
(1) Akai is travelling from Canada to Japan. What would be a
good estimate for the exchange rate of Canadian dollars to Japanese yen if C \(\$ 1 \doteq \mathrm{JP} \neq 90.198\) ?
\(\mathrm{C} \$ 1=\) about \(\mathrm{JP} ¥\) \(\qquad\)
(2) Akai is travelling from Canada to Scotland. What would be a good estimate for the exchange rate of \(\mathrm{C} \$\) to British pounds if \(\mathrm{C} \$ 1 \doteq\) £ 0.607 ?
\(\mathrm{C} \$ 1=\) about \(£\) \(\qquad\)

\section*{Example}

Bakana is a flight attendant for a British airline. She has \(£ 300\). How can she
estimate this amount in has \(£ 300\). How can she
estimate this amount in Canadian dollars?

\section*{Solution}
\(£ 1\) is about \(C \$ 1 \frac{1}{2}\). So \(£ 300\) is about C \(\$ 300+C \$\) \(\qquad\) , which is about C\$ \(\qquad\)

\section*{REFLECTING}

When might it be useful to estimate an amount in a different currency?

\section*{Practice}
1. Show a reasonable estimate for each exchange rate.
\begin{tabular}{|l|c|c|c|c|}
\hline \begin{tabular}{c}
Starting \\
currency
\end{tabular} & Amount & Convert to & \begin{tabular}{c}
Exchange \\
rate
\end{tabular} & Estimate \\
\hline Canadian dollars & C \(\$ 1\) & South African rand & & \\
\hline Canadian dollars & C \(\$ 1\) & Mexican pesos & & \\
\hline Canadian dollars & C \(\$ 1\) & Euros & & \\
\hline Mexican pesos & M \(\$ \$ 1\) & Canadian dollars & & \\
\hline Thai baht & 1 THB & Canadian dollars & & \\
\hline Chinese yuan & CN \(¥ 1\) & Canadian dollars & & \\
\hline
\end{tabular}

Hint
You may look up current exchange rates online.
2. Hannah is taking a pastry chef program in France. The tuition is \(€ 4000\). About how much is the tuition in Canadian dollars?
3. Sue would like to place an order for a shipment of shirts for her retail store. The shipment costs about 5000 Mexican pesos. About how much would the shipment be worth in Canadian dollars? Explain how you estimated.
4. Juma rented a car in Australia for \(\$ 280\) Australian. About how much will this cost in \(\mathrm{C} \$\) ? Explain your estimate.
5. Rosa is ordering goods from South Africa, for 1250 rand. How can you estimate the price in Canadian dollars?

\section*{Chapter Review}
1. Calculate each unit price.
a) 3 shrubs for \(\$ 145.50\)
b) \(\$ 10.99\) for 4 kg
c) 200 g for \(\$ 69.98\)
d) 250 L for \(\$ 362.50\)
2. Jelani is choosing between a 300 g package of cheddar cheese for \(\$ 4.57\) and a 450 g package for \(\$ 7.65\). Which package has a lower unit price?
3. Dalton is trying to attract more members to his gym. Memberships usually cost \(\$ 649 /\) year with a sign-up fee of \(\$ 75\). He offers two promotions:
- Fitness promotion: no sign-up fee
- Strength promotion: \(15 \%\) off total fee

Which promotion is less expensive for a 12-month membership?
4. Ramona is a travel agent. She has found a 30\% off deal for her client. The regular price for the trip is \(\$ 850\) per person. How much does the trip cost with the \(30 \%\) discount?
5. Karlee provides maid service to residential homes. She would like to increase her prices by \(15 \%\). She currently charges \(\$ 18 / \mathrm{h}\).
a) What would Karlee's new hourly rate be?
b) Karlee is currently working 40 h a week. How much more would she be making after the increase?
6. David wants to take cooking classes. One cooking school offers 12 classes for \(\$ 552.50\). If he signs up before the end of the week, he will get a \(20 \%\) discount.
a) How much will the classes cost with the \(20 \%\) discount?
b) How much would David be paying per class before the

7. In 2010, many people travelled to Vancouver to participate in the Olympics. If an athlete from Japan brought 100000 yen, how much is this in Canadian dollars if \(¥ 1 \doteq C \$ 0.011\) ?
8. Jonathan travelled to Mexico for business. He paid C\$899 for the trip and spent an additional 1400 pesos while in Mexico.
a) Estimate the value of M \(\mathbf{M} \$ 1400\) in Canadian dollars.
b) Calculate the cost of Jonathan's trip in Canadian dollars.

\section*{Chapter Test}
1. Isoke manages a shoe store. A shipment of 24 pairs costs \(\$ 743.52\). Before she sells the shoes, she calculates the price per pair and adds \(112 \%\) to the unit price. How much profit does Isoke make per pair?
2. Trevor has two offers to consider for lift passes for snowboarding at his favourite hill. The regular price for a lift pass is \(\$ 87\).
- Jump offer: buy one get another at half off
- Rail offer: \(20 \%\) off each pass
a) If Trevor wants to buy 10 lift passes, which offer is a better price?
b) If Trevor wants to buy 2 lift passes, which offer is a better price?

\section*{Hint}

You can look up the current exchange rate or use these.
C\$1 = US\$0.967
\(\mathrm{C} \$ 1=€ 0.676\)
\(\mathrm{C} \$ 1=\mathrm{JP} \neq 90.198\)
3. Suppose you had \(\$ 500\) Canadian. Calculate the amount of money that would be in each currency.
a) US dollars
b) Euros
c) Japanese yen

\section*{Glossary}

\section*{A}
acres: a unit of measure for area in the imperial system
1 acre \(=4840\) sq yd
1 acre \(\doteq 0.405\) ha
acute angle: an angle that measures more than \(0^{\circ}\) and less than \(90^{\circ}\)

adjacent angles: angles that share a common vertex and a common arm
For example, angles 1 and 2 are adjacent angles. Angles 3 and 4 are adjacent angles.

adjacent side: the side that is part of an acute angle in a right triangle but is not the hypotenuse For example, \(A B\) is adjacent to \(\angle A\).

side adjacent to \(\angle A\)
adjacent sides: two sides in a triangle or polygon that share a vertex
alternate angles: two angles formed by two lines and a transversal and located on opposite sides of the transversal
For example, angles 3 and 4 are alternate interior angles. Angles 1 and 2 are alternate exterior angles.

angle bisector: a line that cuts an angle in half to form two equal angles
angle of depression: the angle between the horizontal and the line of sight when looking down at an object

angle of elevation: the angle between the horizontal and the line of sight when looking up at an object

annual: for a year
\(B\)
base salary: payment for a given work period, such as an hour or a week, but not including additional pay
bisect: to divide into two equal parts
bisector: the line that divides an angle or line into two equal parts

bonus: an additional payment to a worker as a reward for meeting company goals

\section*{C}

Canada Pension Plan (CPP): a government fund that provides a monthly pension to workers when they retire
capacity: the amount that a container can hold
Celsius: a scale for temperature that includes the freezing point of water at \(0^{\circ}\) and the boiling point of water at \(100^{\circ}\)
centimetre (cm): a unit of measure for length in the metric system
\(1 \mathrm{~cm}=10 \mathrm{~mm}\)
\(100 \mathrm{~cm}=1 \mathrm{~m}\)
centre of rotation: a fixed point around which points in a shape are rotated. It can be inside or outside the shape.
charitable donations: an option for employees to make a regular donation to a charity
circumference: the perimeter of a circle Circumference \(=\pi \times d\), where \(d\) is the diameter (\(\pi\) is about 3.14)

commission: a payment based on a percentage of the worker's sales
company health plan: a plan for medical expenses not covered by other government health care plans
company pension plan: a fund that provides a company pension during retirement, in addition to CPP
complementary angles: two angles whose sum is \(90^{\circ}\)
congruent: same size and shape
contract: a payment for a fixed period of time and/or a fixed amount of money
coordinates (\(x, y\)): a way to describe locations on a grid using a pair of numbers For example, \((-1,3)\) lines up with -1 on the \(x\)-axis and 3 on the \(y\)-axis.
corresponding angles: 1. two angles formed by two lines and a transversal and located on the same side of the transversal

2. angles that match when two shapes are arranged to look the same

corresponding sides: sides that match when two shapes are arranged to look the same For example, \(A B\) and \(J K\) are corresponding sides (above).
cosine: the ratio of the length of the adjacent leg to the length of the hypotenuse in a right triangle

\(\cos A=\frac{b}{c}\)
cup (c): a unit of measure for capacity in the imperial system
1 cup \(=8\) fluid ounces (US) or 10 fluid ounces (UK)
2 cups \(=1\) pint

\section*{D}
decametre (dam): a unit of measure for length in the
metric system
1 dam \(=10 \mathrm{~m}\)
100 dam \(=1 \mathrm{~km}\)
decimetre (dm): a unit of measure for length in the metric system
\(1 \mathrm{dm}=10 \mathrm{~cm}\)
\(10 \mathrm{dm}=1 \mathrm{~m}\)
diameter: a straight line through the centre of a circle that joins two points on the circumference Diameter \(=\) radius \(\times 2\)
dilation: the result of multiplying or dividing each length on a shape by the same number to create a similar shape
dilation centre: a fixed point from which a shape is enlarged or reduced
disability insurance: a plan that provides a source of income when an employee is injured and unable to work
double time: the hourly wage multiplied by 2

\section*{\(E\)}

Employment Insurance (EI): a fund that provides income to people who lose their jobs (through no fault of their own) while they look for a new job
equilateral triangle: an equilateral triangle has equal sides and equal angles

\section*{F}
face: a 2-D shape that forms a flat surface of a 3-D object

Fahrenheit: a scale for temperature that includes the freezing point of water at \(32^{\circ}\) and the boiling point of water at \(212^{\circ}\)
fluid ounce (fl oz): a unit of measure for capacity in the imperial system
1 fluid ounce \(=2\) tablespoons
8 fluid ounces \(=1\) cup (US) or
10 fluid ounces \(=1\) cup (UK)
foot (ft): an imperial unit of measurement for length 1 foot = 12 inches 3 feet \(=1\) yard

\section*{C}
gallon (gal): a unit of measure for capacity in the imperial system
1 gallon = 4 quarts
gram (g): a unit of measure for mass in the metric system
\(1000 \mathrm{~g}=1 \mathrm{~kg}\)
gross income: the total amount of money earned in a pay period before any deductions

\section*{H}
hectares (ha): a unit of measure for area in the metric system
1 ha is the same area as 1 square hectometre \(1 \mathrm{ha}=1 \mathrm{hm}{ }^{2}\)
hectometre (hm): a unit of linear measure in the metric system
\(1 \mathrm{hm}=100 \mathrm{~m}\)
\(10 \mathrm{hm}=1 \mathrm{~km}\)
height: the perpendicular distance from the base of a polygon to an opposite vertex

hourly wage: a fixed payment for each hour of work hypotenuse: the side of a right triangle that is opposite the \(90^{\circ}\) angle

\section*{1}
inch: an imperial unit of measurement for length
12 inches = 1 foot
36 inches = 1 yard
income: money received for work
income tax: a portion of a worker's earnings that federal and provincial governments use to provide services
interior angles: 1. angles inside a polygon
2. angles between two lines

For example,

irregular polygon: a closed figure with straight sides with varying side lengths and angle measures

\section*{K}
kilogram (\(\mathbf{k g}\)): a metric unit of measure for mass \(1 \mathrm{~kg}=1000 \mathrm{~g}\) \(1000 \mathrm{~kg}=1\) tonne (t)
kilolitre (\(\mathbf{k L}\)): a unit of measure for capacity in the metric system
\(1 \mathrm{~kL}=1000 \mathrm{~L}\)
kilometre (km): a unit of measure for length in the metric system
\(1 \mathrm{~km}=1000 \mathrm{~m}\)

\section*{L}
legs: the two sides that form the \(90^{\circ}\) angle in a right triangle (see hypotenuse)
life insurance: a plan that pays a sum of money to a family member or designated beneficiary in the case of an employee's death
line of reflection: the line across which a shape is flipped
litre (L): a metric unit of measure for capacity \(1 \mathrm{~L}=1000 \mathrm{~mL}\) \(1000 \mathrm{~L}=1 \mathrm{~kL}\)

\section*{M}
mass: the amount of matter in an object. Common units of mass are grams, kilograms, and tonnes (metric) and pounds and tons (imperial).
metre (m): the base unit of measure for length in the metric system
\(1 \mathrm{~m}=100 \mathrm{~cm}\)
\(1000 \mathrm{~m}=1 \mathrm{~km}\)
midpoint: the point on a line segment that divides it into two equal parts
mile (mi): an imperial unit of measure for length
1760 yards \(=1\) mile
5280 feet \(=1\) mile
millilitre (mL): a metric unit of measure for capacity \(1000 \mathrm{~mL}=1 \mathrm{~L}\)
millimetre (mm): a unit of measure for length in the metric system
\(1000 \mathrm{~mm}=1 \mathrm{~m}\)
\(10 \mathrm{~mm}=1 \mathrm{~cm}\)
net: a composite 2-D shape that can be folded to create a 3-D object (such as a cube, cone, pyramid, cylinder)
net income: the money left after deductions are taken from gross income; also called take-home pay

\section*{0}
obtuse angle: an obtuse angle is greater than \(90^{\circ}\) but less than \(180^{\circ}\)

opposite angles: non-adjacent angles that are formed by two intersecting lines

opposite side: the side that is directly across from a specific acute angle in a right triangle For example, \(B C\) is opposite \(\angle A\).

ounce (oz): a unit of measure for mass in the imperial system 16 ounces \(=1\) pound

\section*{\(P\)}
parallel: two or more lines that are always the same distance apart

payroll savings: an option for employees to make a regular contribution to a savings plan, such as Canada Savings Bonds
perimeter: the distance around an object
perpendicular: two lines that form a right angle (\(90^{\circ}\))

perpendicular bisector: a line that bisects a line segment and is perpendicular to the line segment

pi \((\pi)\) : the ratio of the circumference of a circle to its diameter. Its value is about 3.14 .
piecework: a payment based on the number of items created or completed
pint (pt): a unit of measure for capacity in the imperial system
1 pint = 2 cups
2 pints \(=1\) quart
polygon: a closed figure with straight sides
pound (lb): a unit of measure for mass in the imperial system
1 pound \(=16\) ounces
2000 pounds \(=1\) ton
Pythagorean theorem: a statement of a relationship in which the sum of the squares of the lengths of the legs of a right triangle is equal to the square of the length of the hypotenuse \(a^{2}+b^{2}=c^{2}\)

\section*{Q}
quart (qt): a unit of measure for capacity in the imperial system
1 quart = 2 pints
4 quarts \(=1\) gallon

\section*{R}
radius: a straight line from the centre of a circle to any point on the circumference

rate of exchange: the amount that money is worth from one currency to another. This varies daily.
ratio: a comparison of quantities with the same units reciprocal: the multiplier of a number that gives 1 as a result
For example, the reciprocal of \(\frac{1}{2}\) is \(\frac{2}{1}\) or 2 . \(\frac{1}{2} \times \frac{2}{1}=1\) and
\(1 \div \frac{1}{2}=\frac{2}{1}\)
referent: a known measure used for comparing and estimating
reflection: the result of flipping a 2-D shape across a line
reflex angle: an angle that measures between \(180^{\circ}\) and \(360^{\circ}\)

regular polygon: a closed figure with all sides equal and all angles equal
right angle: an angle that measures \(90^{\circ}\)
right triangle: a triangle that contains a right angle
rotation: the result of turning a 2-D shape around a point. Rotations can go clockwise (cw) or counterclockwise (ccw).
royalty: a payment for a piece of work that is marketed and sold. The amount is based on a percentage of sales.

\section*{s}
salary: a regular fixed payment for work, usually expressed as an amount per year but paid regularly (e.g., every two weeks or monthly)
scale factor: the number that the dimensions of a polygon are multiplied by to calculate the corresponding dimensions of a similar polygon

sectors: sections of a circle
shift premium: an additional amount of money for working outside of regular workday hours or on weekends
similar polygons: polygons that are congruent or are enlargements or reductions of each other. The ratios of corresponding lengths are the same, and corresponding angles are equal.
sine: the ratio of the length of the opposite leg to the length of the hypotenuse in a right triangle

\[
\operatorname{Sin} A=\frac{a}{c}
\]
slant height: the distance from the top to the base, at a right angle, along a slanted side of a pyramid or cone. It is measured to the midpoint of the base side for a pyramid.

square number: the result when a whole number is multiplied by itself
straight commission: payment based only on sales made
supplementary angles: two angles whose sum is \(180^{\circ}\)
surface area: the sum of all the areas of the faces of a 3-D object
symmetrical: a way of describing a shape that can be folded along at least one line so one half fits exactly over the other

\section*{T}
tangent: the ratio of the length of the opposite leg to the length of the adjacent leg

\(\operatorname{Tan} A=\frac{a}{b}\)
time and a half: the hourly wage multiplied by a factor of 1.5
ton (T): a unit of measure for mass in the imperial system
1 ton = 2000 pounds
tonne (t): a metric unit of measure for mass
\(1 \mathrm{t}=1000 \mathrm{~kg}\)
transformation: the result of moving or changing a shape according to a rule. The new shape is called the image.
translation: the result of sliding a 2-D shape along a straight line. On a grid, you can translate a shape right, left, up, or down.
translation rule: a way of describing a translation with numbers and directions For example, " 8 units right and 4 units up" or (R8, U4)
transversal: a line that intersects two or more lines
trigonometry: the study of relationships among the sides and angles in right triangles

\section*{1}
union dues: a deduction made when an employee belongs to a union. Unions negotiate wages, benefits, and working conditions with employers.
unit price: the amount of money charged for a unit of an item

\section*{v}
vertex: the point where two or more lines meet
volume: the amount of space occupied by a 3-D object

\section*{W}
wage and tips: an hourly wage plus varying amounts in tips for services provided

\section*{Y}
yard: an imperial unit of measure for length
1 yard \(=3\) feet
1 yard \(=36\) inches

\section*{Charts and Formulas}

\section*{Metric Units}

\section*{Imperial Units}
\begin{tabular}{|c|c|c|c|c|}
\hline Lengh & 3, Anem Mew & P Volumas & Gepraty & \\
\hline inch (in. or") & square inches (sq in.) & cubic inches (cu in.) & tablespoon (T) & ounces (oz) \\
\hline \begin{tabular}{l}
foot (ft or.) \\
1 foot \(=12\) inches
\end{tabular} & \begin{tabular}{l}
square feet (sq \(f\)) \\
\(1 \mathrm{sq} \mathrm{ft}=144 \mathrm{sq} \mathrm{in}\).
\end{tabular} & \[
\begin{aligned}
& \text { cubie feet (cu ft) } \\
& 1 \text { cu ft }=1728 \text { cuin. }
\end{aligned}
\] & \[
\begin{gathered}
\text { fluid ounce (1 } \mathrm{oz}) \\
1 \mathrm{ffoz}=2 \mathrm{O}
\end{gathered}
\] & \[
\begin{aligned}
& \text { pound (b) } \\
& 1 \mathrm{lb}=16 \mathrm{oz}
\end{aligned}
\] \\
\hline yard (yd)
1 yard \(=3\) feet
mile (mi) & \begin{tabular}{|c|}
\hline square yard (sq yd) \\
1 sq yd \(=9 \mathrm{sq} \mathrm{ft}\)
\end{tabular} & cubic yard (cu yd) \(1 \mathrm{cu} y \mathrm{~d}=27 \mathrm{cuft}\) cubic mile (cu mi) & \[
\begin{gathered}
\operatorname{cup}^{(c)} \\
1 \mathrm{c}=8 \mathrm{fl} \mathrm{oz}(\mathrm{US}) \\
1 \mathrm{c}=10 \mathrm{fl} \mathrm{oz}(\mathrm{UK})
\end{gathered}
\] & \[
\begin{aligned}
& \operatorname{ton}(\mathrm{T}) \\
& 1 \mathrm{~T}=2000 \mathrm{lb}(\mathrm{US}) \\
& 1 \mathrm{~T}=2240 \mathrm{lb}(\mathrm{UK})
\end{aligned}
\] \\
\hline \[
1 \text { mile }=1760 \mathrm{yd}
\] & \[
1 \mathrm{sq} \mathrm{mi=3097} 600 \mathrm{sq} \text { yd }
\] & cubic mile (cumi) & pint (pt) \(1 \mathrm{pt}=2 \mathrm{c}\) & \\
\hline & 1 acre \(=4840\) sq yd & & quart (qt) \(1 \mathrm{qt}=2 \mathrm{pt}\) & \\
\hline & & & gallon (gal) \(1 \mathrm{gal}=4 \mathrm{gt}\) & \\
\hline
\end{tabular}

\section*{Converting Common Imperial Units to Metric (SI)}
\begin{tabular}{|c|c|c|c|c|}
\hline - Linear & \% Area & 7. Volume & Capacity & \\
\hline \(1 \mathrm{in} . \doteq 2.54 \mathrm{~cm}\) & 1 sq in \(\doteq 6.4516 \mathrm{~cm}^{2}\) & \(1 \mathrm{cu} \mathrm{in}. \doteq 16.39 \mathrm{~cm}^{3}\) & \(1 \mathrm{fl} \mathrm{oz} \pm 29.57 \mathrm{~mL}\) & Mass \\
\hline , \(1 \mathrm{f}=0.31 \mathrm{~m}\) & \(1 \mathrm{sq} \mathrm{t}=0.0929 \mathrm{~m}^{2}\) & \(1 \mathrm{cuft}=28.32 \mathrm{dm}^{3}\) & \(1 \mathrm{pt}=0.47 \mathrm{~L}\) or 470 mL . & \(1 \mathrm{oz}=28.35 \mathrm{~g}\) \\
\hline \(1 \mathrm{yd} \doteq 0.91 \mathrm{~m}\) & 1 sq yd \(\doteq 0.8361 \mathrm{~m}^{2}\) & \(1 \mathrm{cuyd} \doteq 0.76 \mathrm{~m}^{3}\) & \(1 \mathrm{qt} \doteq 0.95 \mathrm{~L}\), or 950 mL & \(1 \mathrm{lb}=0.45 \mathrm{~kg}\)
\(1 \mathrm{~T}=0.91 \mathrm{t}\) \\
\hline \(1 \mathrm{mi}=1.61 \mathrm{~km}\) & \(1 \mathrm{sq} \mathrm{mi}=2.5900 \mathrm{~km}^{2}\) & \(1 \mathrm{cu} \mathrm{mi}=4.17 \mathrm{~km}^{3}\) & \(1 \mathrm{gal}=3.79 \mathrm{~L}\) or 3790 mL & \\
\hline & 1 acre \(\doteq 0.4047\) ha & & & \\
\hline
\end{tabular}

\section*{Converting Common Metric (SI) Units to Imperial}

\begin{tabular}{l}
Temperature \\
\hline\(F=\frac{9}{5} C+32\) \\
\(C=\frac{5}{9}(F-32)\) \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Chrele Formulas } \\
\hline Diameter \(=\) radius \(\times 2\) \\
Circumference \\
\(=\pi \times\) diameter \\
Circumference \\
\(=\pi \times\) radius \(\times 2\) \\
Area: \(\pi \times r^{2}\) \\
\hline
\end{tabular}
```

