

TABLE OP CONTINTS

Fractions 1
Naming Fractional Paris 5
Adding Fractional Parls 11
Fractions in Measurement 12
Fractions in Word Problems 13
Fraction Vocabulary 16
Reading and Writing Fractions 17
Fractions Equal to One 20
Fractions and Number Lines 21
Fractions Greater than One 23
Comparing Fractions 24
Comparing Fractions Using Number Lines 28
Equal Fractions 29
Finding Equal Fractions 31
Practice Test 36

It was thousands of years ago that people first recognized the need for anew kind of number which would nome a part of aunt. The need probotity crose as pecple attempted to measure thetr flelds or weigh preclous match or to counf baskets of grain The kind of mumber needed was a fraction.
The earliest records of the use of fractions come from Babyionla and Eexpt. A six meter long scroch mode from the bark of a papyrus tree and enscribed by an Egyptian named Ahmes is the source for most of our knowledge of early Egypitian mathematics. The 4000 year old Ahmes Papyrus begins with a toble of fracthons, The Egyptians wrote fractions by plocing an oval above the symbols for their number.

$$
\begin{array}{lll}
8_{\text {was }}^{\frac{1}{2}} & \theta_{\text {will }} \text { was } \frac{1}{4} & 8_{\text {was }} \frac{1}{11} \\
8_{\text {was }}^{\frac{1}{3}} & 8_{\text {was } \frac{1}{10}} & 8 \text { was } \frac{1}{100}
\end{array}
$$

All Egyption froctions (except $\frac{2}{3}$) had one as a numerator The frociton we witte as $\frac{3}{4}$, the Egypitions wrote as the sum of the unt fractions $\frac{1}{2}$ and $\frac{1}{4}$. The Egyptians thought that unit fractions woutd be ${ }^{2}$ impler than other fractions to work with instead. computing with Egyptian fractions was actually very difficutt.
In ancient Egypt only a smath privieged group of people were allowed to know the secrets of mathematics. These privileged few, called scribes, kept track of the accounts of the rulara, priests and wealthy pitvate clltzens.

On the cover of this book an Egyptitan scitibe records the amount of grain paid by formers to theit rier as taxes, if a basket is only partiy full, the scribe muat use a frocition to dascriba Hi. How many froctions can you find on the scribe's papyrus scrol?
Fractions appear on the cover in two other places. The water jug holds $2 \frac{1}{\mathrm{~h}}$ hisa (A hin was the Egyplian unit of lould measure.) The parts of the Sacred Eye \%or represent hierogyphto symbots for fractions used in mecauring bushole of grain \&for $\frac{1}{2}$:Ofor $\frac{1}{4}$: for $\frac{1}{2}$ i for $\frac{1}{6}$: © for $\frac{1}{3}$: Difor $\frac{1}{4,}$ According to an EgypHlan myth, the wicked god Seff. pluckedout the eye of Horus and toreit to bits The wise god Iholth ghedilt back together again as if he were restoring a cracked grain of barlay The parts of the eye add up to $\frac{60}{5}$, locking onity the lithe bit of magic give needed to make the whole eye come back to life.

> IMPORTANT NOTICE: This book is sold as a student workbook and is nof to bo used as a duplicating master. No part of this book may be reproduced in any form without the prlor writton permisalon of the publisher. Copyright infringement is a violation of Fodoral Law.

$0,1,2,3,4,5 \ldots$ are whole numbers. Whole numbers count units (whole things).
$\frac{1}{2}, \frac{3}{5}, \frac{5}{8}, \frac{10}{4}, \frac{6}{2}, \frac{4}{7} \ldots$ are fractions. Fractions name parts of units.

Circle all the fractions.
($\frac{5}{2}$
3
$\frac{1}{2}$
$4 \quad \begin{aligned} & \frac{3}{7} \\ & \end{aligned}$
6
2
$2 \quad \frac{8}{5}$
$\frac{272}{356}$
$\frac{3}{2}$

$$
231 \quad \frac{3000}{2}
$$

hen a unit is divided into two equal parts, the parts are halves. hen a unit is divided into three equal parts, the parts are thirds. Four equal parts are fourths or quarters. Five equal parts are fifths.

Which shows halves? Which shows thirds? Which shows quarters?

 Match.

Fractions can be shown by dividing a unit into equal parts. Equal parts must all be the same size.

is divided into three parts. It does does not show thirds.

is divided into four parts. It does not show fourths.

is divided into five parts. It does not show fifths.

is divided into six parts. It does not show sixths.

is divided into seven parts. It does not show sevenths.

Divide into two equal parts.

This shows 2 halves.

Divide into six equal parts.

Show 2 halves.

Divide into three equal parts.

Show 6 sixths.

Show 4 fourths.

4
These fractions are fourths: $\frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{4}{4}, \frac{5}{4}, \frac{6}{4}, \frac{7}{4} \ldots$ These fractions are fifths: $\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{5}{5}, \frac{6}{5}, \frac{7}{5} \ldots$ These fractions are tenths: $\frac{1}{10}, \frac{2}{10}, \frac{3}{10}, \frac{4}{10}, \frac{5}{10}, \frac{6}{10}, \frac{7}{10}, \ldots$ Which fractions are thirds? $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{1}{3}, \frac{1}{5}, \frac{7}{10}, \frac{3}{6} \ldots$ Which fractions are sixths? $\frac{1}{3}, \frac{6}{6}, \frac{3}{6}, \frac{1}{4}, \frac{3}{4}, \frac{10}{6}, \frac{1}{5} \ldots$ Which fractions are ninths? $\frac{1}{9}, \frac{3}{9}, \frac{9}{3}, \frac{1}{2}, \frac{5}{90}, \frac{100}{9}, \frac{0}{9} \ldots$

Name the shaded part of each figure.

Name the shaded part of each figure.

You do the shading.

Fill in the blanks.
G shows $\frac{1}{4}$.

_ shows $\frac{11}{25}$.
K shows \qquad .
B shows \qquad .

L shows \qquad - C shows \qquad . shows $\frac{0}{8}$. shows $\frac{5}{10}$. __ shows $\frac{8}{8}$. __ shows $\frac{3}{8}$.
\qquad , __, \qquad , show less than one half shaded.
\qquad , show one half shaded.
\qquad , \qquad , \qquad , \qquad show more than one half shaded.
\qquad , show one whole unit shaded.

_Is shaded.
_ is shaded.

_ is shaded.

$\xrightarrow{\square}$
is shaded.

Shade $\frac{3}{8}$ in three other ways.

How many different ways do you think there are to shade $\frac{3}{8}$ of the square? 6

15 32 56 100

The answer is on the next page. See if you were right.
\square I was right.
\square I was wrong.

Answer from last page: There are 56 different ways to shade $\frac{3}{3}$ of the square.

Shade $\frac{1}{4}$ of the square.

Shade $\frac{3}{4}$ of the triangle.

Shade $\frac{2}{5}$ of the circle.

Shade $\frac{5}{6}$ of the hexagon.

Divide into three equal parts. Shade $\frac{2}{3}$ of the rectangle.

Divide into fourths.
Shade $\frac{1}{4}$ of the rectangle.

Divide into four equal parts. Shade $\frac{4}{4}$ of the triangle.

Divide into sixths.
Shade $\frac{3}{6}$ of the circle.

 is shaded.

Both parts together show $\frac{5}{5}$.
Both parts together show \qquad -

Both parts together show \qquad .

Both parts together show \qquad .

$\sqrt{8}$
 $+\frac{1}{4}=\frac{4}{4}$

출 $+3+\square=$

$0 \cdot(1) \cdot$

$$
\frac{1}{3}+\frac{1}{3}=\quad \frac{3}{7}+\frac{2}{7}=\quad \frac{3}{8}+\frac{5}{8}=\quad \frac{3}{5}+\frac{1}{5}=
$$

Fractions in Measurement

This cup is
__full.

Fill this cup $\frac{3}{4}$ full.

Fill this
cup $\frac{1}{2}$ full.

Fill this cup $\frac{4}{4}$ full.

$\frac{1}{12}$ is shaded.
Shade $\frac{1}{12}$ more.

$\frac{1}{4}$ is shaded.
Shade $\frac{3}{4}$ more.

$\frac{1}{6}$ is shaded. Shade $\frac{1}{6}$ more.

$\frac{1}{3}$ is shaded.
Shade $\frac{1}{3}$ more.

Fill this carton
Fill this carton $\frac{3}{8}$ full. $\frac{1}{4}$ full.

Fill this carton $\frac{3}{4}$ full.

This bean is of an inch long.

This beetle is
\qquad of an inch long.

This noodle is \qquad of an inch long.

There are 10 answers on the paper.
7 of the 10 answers are correct. What fraction of the answers are correct? $\frac{7}{10}$

There are \qquad books in the group.
___ of the \qquad books are open. What fraction of the books are open? \qquad

bD A
 TR ON
 in mB

There are \qquad letters in the group. ___ of the ___ letters are vowels. What fraction of the letters are vowels? \qquad __ of the __ letters are capitals. What fraction of the letters are capitals? \qquad

$$
\begin{array}{lll}
1 & 2^{3} & 4 \\
5 & 6 & 7
\end{array}
$$

There are \qquad numbers in the group.
___ of the \qquad numbers are odd. What fraction of the numbers are odd? \qquad ___ of the ___ numbers are even. What fraction of the numbers are even?

There are \Longrightarrow students in the class.
\qquad of the \qquad students are girls.
What fraction of the students are girls? \qquad
There are \qquad students in the class.
___of the \qquad students are happy.
What fraction of the students are happy? \qquad
What fraction of the students have glasses? \qquad
What fraction of the students have hats? \qquad
There are \qquad happy boys in the class.
\qquad happy boys have hats. What fraction of the happy boys have hats? $\frac{2}{6}$

There are___girls with glasses in the class.
__ of the ___ girls with glasses are sad.
What fraction of the girls with glasses are sad? \qquad
add circle count cube decimal divide divisor graph line meter number plane point set square zero

There are \qquad words in the list.
___ of the__ words begin with c.
What fraction of the words begin with \underline{c} ? \qquad
What fraction of the words begin with p ?
What fraction of the words end with \underline{e} ?
What fraction of the words have a $t ?$
What fraction of the words have exactly four letters? \qquad
There are __ words that have exactly five letters.
__ of the ___ five letter words begin with p ?
What fraction of the five letter words begin with p ?
There are \qquad words that end with $\underline{\text { r }}$.
__of the \qquad words that end with \underline{r} begin with \underline{d}.
What fraction of the words that end with \underline{r} begin with \underline{d} ? \qquad
What fraction of the six letter words begin with \underline{c} ?
What fraction of the words that begin with \underline{s} have an \underline{e} ?

Fraction Vocabulary

The top and bottom numerals in a fraction have names. The top is called the numerator of the fraction and the bottom is called the denominator of the fraction. The little line that separates the numerator and denominator is called the fraction bar.

$$
\text { numerator } \Rightarrow \frac{3}{4} \leftarrow \text { fraction bar }
$$

Write the fraction.
8 is the numerator; 20 is the denominator. The fraction is $\frac{8}{20}$.
6 is the numerator; 7 is the denominator. The fraction is \qquad .

3 is the numerator; 4 is the denominator. The fraction is \qquad -

28 is the denominator; 10 is the numerator. The fraction is \qquad .

2 is the denominator; 1 is the numerator. The fraction is \qquad -

7 is the numerator; 8 is the denominator. The fraction is \qquad .

6 is the denominator; 0 is the numerator. The fraction is \qquad .

Fill in the blanks.
In $\frac{3}{8}, 8$ is the denominator_and 3 is the \qquad
$\operatorname{In} \frac{5}{6}, 5$ is the \qquad and 6 is the \qquad .
$\ln \frac{1}{7}, 1$ is the \qquad and 7 is the \qquad -
$\ln \frac{20}{35}, 35$ is the \qquad and 20 is the \qquad .
$\ln \frac{1}{50}, 1$ is the \qquad and 50 is the \qquad。

Match.

(20) 20)	年	$\frac{18}{12}$	$\frac{3}{50}$	100
$\frac{7}{11}$	$\frac{12}{18}$	$11: 15$	28	$\frac{20}{8}$
1980	$\$ 3.50$	$\frac{11}{10}$	4in	$\frac{20}{20}$
$\frac{1}{100}$	3×4	$\frac{3}{4}$	$\frac{19}{80}$	$\frac{10}{11}$

twenty-eight
nineteen eightieths
seven elevenths
seven eleven
eleven fifteen

twenty twentieths
eleven tenths
one hundredth
three fours
three fourths

This short article appeared in the school newspaper. Underline every fraction.
The girls basketball team won the league title this season. The team won seven eighths of their sixteen games. Next year might be a tough one though ecause three fourths of the twelve girls on the team are seniors. The boys fasketball team had a fine season also, winning three fifths of their home ames and half of their away games. Things look good for the boys next year because twelve of their fifteen players will be back.

Write the numeral for each fraction.

one fifth	$\frac{1}{5}$	eight twelfths	
one eighth		ten elevenths	
one twelfth		thirteen fourteenths	
two thirds	thirteen fortieths		
two sixths	thirteen forty -fourths		
three seventeenths		twenty twenty - sevenths	
four fourths		twenty -seven thirtieths	
four tenths		thirty-four fiftieths	
four elevenths		fifty hundredths	
five nineteenths		fifty -six sixtieths	
five thirty -eighths		eighty -nine ninetieths	
six twentieths		one hundred hundredths	

Write the numeral for the underlined words.
The class was three fourths of an hour long. \qquad
Phil spent one half of a dollar. \qquad
Ms. Harris spent one fourth of her income on rent. \qquad
Mr. Garcia read two thirds of the book. \qquad
Judy walked six tenths of a kilometer to school. \qquad
Two fifths of the windows were broken.

Write the fractions below just as you would say them aloud. The list at the side of the page will help you spell them correctly.

Fractions Equal to One
Fill in the tags.

$$
\begin{aligned}
& 1=\frac{2}{2} \\
& 1= \\
& 1= \\
& 1= \\
& 1= \\
& 1=
\end{aligned}
$$

We can say that: $1=\frac{2}{2}====$
Some other fraction names for one are: $\frac{6}{6}, \frac{7}{7}, \frac{11}{11}, \frac{15}{15}, \frac{23}{23}$.
List five more fraction names for one: \qquad , \qquad , \qquad , \qquad , \qquad .
Circle the fraction equal to one.
$\begin{array}{llll}\frac{2}{3} & \frac{4}{4} & \frac{7}{8} & \frac{1}{2}\end{array}$

Circle the fraction equal to $\frac{10}{10}$.
$\frac{2}{7} \quad \frac{1}{8} \quad \frac{2}{2} \quad \frac{10}{11}$

Circle all of the fractions equal to one.

This rectangle is divided into 2 equal parts.

Each unit on the number line is divided into The rectangle and the number ilne show Finish labeling the number Ilne.

This rectangie is divided Into \qquad equal parts. Each unit on the number line is divided Into \qquad equal parts. The rectangle and the number line show \qquad Finish labeling the number IIne.

This rectangle is divided Into equal parts. Each unit on the numbar line is divided Into \qquad equal parts. The rectangle and the number line show Finish labeling the number line. \qquad -

Each unit on the number line is divided Into Label the number line. \qquad equal parts. It shows \qquad .

A number line can be labeled with fractions or with whole numbers and mixed numbers. (A mixed number is a whole number together with a fraction.) Finish labeling the number lines. Write a fraction above each mark and write a whole number or mixed number below each mark.

은 $\quad \frac{1}{4}$
0 0 $\frac{1}{4}$ $\begin{array}{llll}0 \frac{2}{4} & 0 \frac{3}{4} & 1 & 1 \frac{1}{4}\end{array}$
2

Write the whole or mixed number that equals each fraction. Use the number lines above.

$$
\begin{array}{llll}
\frac{3}{2}=1 \frac{1}{2} & \frac{5}{2}= & \frac{2}{2}= & \frac{6}{2}= \\
\frac{4}{3}= & \frac{5}{3}= & \frac{8}{3}= & \frac{9}{3}= \\
\frac{5}{4}= & \frac{11}{4}= & \frac{7}{4}= & \frac{13}{4}=
\end{array}
$$

Fractions Greater than One

___ of the squares are shaded.

___ squares are shaded.

Comparing Fractions

Shade the squares and then put a loop around the correct answer.
Shade $\frac{1}{2}$ Shade $\frac{1}{3}$.
Shade $\frac{1}{4}$.
Shade $\frac{1}{3}$.

$\frac{1}{4} \begin{aligned} & \text { has more shading than } \\ & \text { has as much shading as } \\ & \text { has less shading than }\end{aligned} \frac{1}{3}$

2 has more shading than
$\frac{2}{4}$ has as much shading as $\frac{1}{2}$
 Shade $\frac{3}{4}$.

2 has more shading than $\frac{2}{3}$ has as much shading as has less shading than

Shade $\frac{4}{5}$. Shade $\frac{3}{5}$.

$\frac{4}{5} \begin{aligned} & \text { is greater than } \\ & \text { is equal to } \\ & \text { is less than }\end{aligned} \frac{3}{5}$

Shade the squares. Then fill in the blank in one of the following ways:

$$
\begin{aligned}
& \text { is greater than } \\
& \text { is equal to } \\
& \text { is less than }
\end{aligned}
$$

Shade $\frac{2}{3}$.
Shade $\frac{2}{10}$.

$\frac{2}{3}$

Shade the squares. Then use $>,=$, or $<$ to make each statement true.
$>$ means "is greater than"
$=$ means "is equal to."
$\&$ means "is less than"

Write the fraction for the shaded part of each rectangle.

Rearrange the fractions above from smallest to largest. smallest

For fractions with the same denominator:
As the numerators get larger, the fractions get \qquad -
As the numerators get smaller, the fractions get \qquad。 The smallest fraction is the fraction with the smallest \qquad The \qquad fraction is the fraction with the largest

Write the fraction for the shaded part of each circle.

Rearrange the fractions above from smallest to largest.

For fractions with the same numerator:
As the denominators get smaller, the fractions get \qquad
As the denominators gat larger, the Practlons get \qquad .
The smallest fraction is the fraction with the \qquad denominator.
The largest fraction is the fraction with the \qquad +

laigost

Comparing Fractions Using Number Lines

To do each problem below:

1. Find both fractions on the number lines.
2. Put a finger on each.
3. Decide which fraction is larger and which is smaller or if both are equal.
4. Put $>,<$, or $=$ between the fractions to make a true statement.

$\frac{2}{5}>\frac{1}{4}$	$\frac{2}{5}$	$\frac{3}{4}$	$\frac{2}{5}$	1	
$\frac{4}{6}$	$\frac{2}{3}$	$\frac{4}{6}$	$\frac{3}{2}$	$\frac{4}{4}$	$\frac{2}{3}$
$\frac{6}{5}$	$\frac{5}{6}$	$\frac{3}{2}$	$\frac{2}{3}$	$\frac{8}{6}$	$\frac{7}{5}$
$\frac{0}{2}$	0	$\frac{0}{4}$	0	0	$\frac{0}{6}$

the fraction for the shaded part of each figure below.

Equal parts shaded.

E

Equal parts shaded.

Shade equal parts.

Shade equal parts.

$\frac{1}{2}$ shaded.
Fractions equal to $\frac{1}{2}$.

$\frac{1}{2}$
We can say that: $\frac{1}{2}====$
$\frac{3}{4}$ shaded.

$\frac{3}{4}$
We can say that: $\frac{3}{4}====$.
Shade $\frac{1}{3}$.

We can say that: $\frac{1}{3}====$

Finding Equal Fractions

elow is another way to find equal fractions. Start with any fraction. Pick number larger than one. Multiply the numerator and denominator of the fraction by that number. The fraction you make looks different than the fraction you started with, but it has the same value. You have found an equal fraction.

$$
\begin{array}{lll}
\text { Piek 2: } & \text { Piek 3: } & \\
\frac{1 \times 2}{3 \times 2}=\frac{2}{6} & \frac{1 \times 3}{3 \times 3}=\frac{3}{9} & \frac{1 \times 4}{3 \times 4}=\frac{4}{12}
\end{array}
$$

Now you find some fractions equal to $\frac{1}{3}$.

$$
\begin{array}{llll}
\text { Piek 5: } & \text { Piek 6: } & \text { Piek } 7: & \text { Pieh 10: }
\end{array}
$$

$\frac{\frac{1 \times 5}{3 \times 5}=\quad \frac{1 \times 6}{3 \times 6}=}{\text { nd some fractions equal to } \frac{2}{3} \text {. }}$

Pick 2:
Pick 3:
Pick 4:
Pick 5:
Piek a:
$\frac{2 \times 2}{3 \times 2}=$
$\frac{2 x^{3}}{3^{3}}=$
$\frac{\ln _{37}}{3^{n 7}}=$
$\frac{1 \times 10}{3 \times 10}=\quad \frac{1 \times 20}{3 \times 20}=$

On this page you must make strings of equal fractions. To make a string of equal fractions you pick a number (larger than 1), multiply, and make an equal fraction. Then you pick another number, multiply, and make another equal fraction. Keep picking numbers and multiplying (always by the numerator and denominator of the first fraction) until you have finished the string.

$$
\begin{aligned}
\text { Pick 2: } \quad \text { Pick 3: } \quad \text { Pick 4: } \quad \text { Pick 5: } \\
\frac{3}{4}=\frac{6}{8}=\frac{9}{12}=\frac{12}{16}=\frac{15}{20}=\frac{18}{24}
\end{aligned}
$$

Find five fractions equal to $\frac{1}{2}$.
Pick 2: Piek 3: Piek 4: Pick 5: Pich $\square:$

$$
\frac{1}{2}=\quad=\quad=\quad=
$$

Find four fractions equal to $\frac{3}{5}$.
Pick 2: Pick 3: Pick 4: Peek g:
$\frac{3}{5}=\frac{6}{10}=\frac{9}{15}=\frac{12}{20}=\frac{15}{25} \quad \frac{1}{4}===$
Find four fractions equal to $\frac{1}{4}$.

Find four fractions equal to $\frac{3}{8}$.

Find four fractions equal to $\frac{5}{8}$.
$\frac{5}{8}=\quad=\quad=$

Find four fractions equal to $\frac{4}{9}$.
$\frac{4}{9}====$

Find four fractions equal to $\frac{1}{10}$.
Find four fractions equal to $\frac{3}{10}$.
$3 \frac{1}{10}=\quad=\quad \frac{3}{10}=\quad=$

Remember，when you multiply this numerator and the denominator of a fraction by the same number（larger than 1）you make an equal fraction．

Pick 5：

$$
\frac{2 \times 5}{3 \times 5}=
$$

Pick $\square:$

$$
\frac{1}{8}=
$$

Make equal fractions．First figure out what the numerator of the fraction was multiplied by and then multiply the denominator by the same number．

$$
\begin{aligned}
& 3 \times \text { 国=15 so } \\
& \text { you must pick 固. } \\
& \frac{3^{25}}{4 \times 5}=\frac{15}{20} \\
& \frac{5}{8}=15 \\
& \begin{array}{l}
5 \times \square=10 \text { si } \square . \\
\text { you must pier } \square .
\end{array} \\
& \text { 1: } \square=3 \text { so } \\
& \text { you must pick } \square \text {. } \\
& \frac{5}{8}=10 \\
& \frac{1}{7}=3 \\
& \frac{1}{3}=5 \\
& \frac{1}{7}=4 \\
& \frac{3}{7}=\underline{6} \\
& \frac{2}{5}=4 \\
& \frac{7}{50}=14 \\
& \frac{9}{10}=90 \\
& \frac{3}{20}=9 \quad \frac{3}{5}=21 \quad \frac{8}{8}=80 \\
& \frac{1}{2}=10 \\
& \frac{2}{9}=10 \\
& \frac{5}{12}=20 \\
& \frac{3}{4}=18 \quad \frac{5}{8}=50 \quad \frac{5}{7}=40
\end{aligned}
$$

(i)it ind the missing numerators to make equal fractions.

$$
\begin{aligned}
& 7 \times \text { 园 }=14 \text { so } \\
& \text { you must pick } \\
& \frac{6 \times 2}{7 \times 2}=\overline{14} \quad \frac{4}{9}=\frac{7}{36} \quad \frac{7}{13}=\frac{}{26} \\
& \frac{1}{5}=\frac{1}{10} \quad \frac{1}{25}=\frac{75}{3}=\frac{3}{11}=\frac{}{66} \\
& \frac{5}{5}=\frac{1}{40} \quad \frac{1}{20}=\frac{5}{40} \quad \frac{5}{6}=\frac{}{30} \\
& \frac{4}{10}=\frac{2}{30} \quad \frac{2}{11}=\frac{2}{55}=\frac{2}{63}
\end{aligned}
$$

Find the missing numerators or denominators.

$$
\begin{array}{lll}
\frac{2}{5}=10 & \frac{2}{7}=\frac{4}{42} & \frac{4}{16}=\overline{32} \\
\frac{5}{6}=\frac{5}{18} & \frac{4}{9}=\frac{12}{} & \frac{2}{7}=\frac{14}{} \\
\frac{2}{9}=\frac{5}{45} & \frac{2}{11}=\frac{5}{33} & \frac{5}{9}=\frac{20}{15} \\
\frac{1}{6}=\frac{7}{3} & \frac{5}{12}=\frac{25}{45} & \frac{15}{15}=\frac{1}{4}=\frac{24}{3} \\
\frac{1}{8}=5 & \frac{0}{3}=\frac{5}{9}
\end{array}
$$

\qquad

Which shows fourths?

The square is dlvided Into three parts.

It does does not show thirds.

Use a fraction to name the shaded part of each flgure.

Shade $\frac{3}{5}$.

Fill this carton $\frac{3}{4}$ full.

Finish the problem below.

7 is the denominator; 3 is the numerator. The fraction is \qquad In $\frac{5}{12}$. \qquad is the numerator and \qquad is the denominator.

There are \qquad figures in the group.
___ of the \qquad figures are shaded.
What fraction of the figures are shaded? \qquad
What fraction of the shaded flgures are squares? \qquad What fraction of the triangles are shaded?

Practice Test - Page 2

Write the numeral. one tenth ___ five eighths \qquad

Circle the fractions equal to one.
$\frac{1}{2} \quad \frac{5}{6} \quad \frac{4}{40}$ ※̊ $\frac{11}{16} \quad \frac{9}{16}$
$2 / 2 \quad \frac{7}{15} \quad \frac{1}{6} \quad \frac{5}{7} \quad \frac{100}{100} \quad \frac{1}{7}$

Finish labeling the number line. Write a fraction above each mark and write a whole number or a mixed number below each mark.

Shade $\frac{1}{4}$. Shade $\frac{5}{8}$.

Find four fractions equal to $\frac{1}{3}$.

$$
\begin{array}{ll}
\text { Pick 2: Pike: Pick } \square: \text { Pick } \square: \\
\frac{1}{3}= & =
\end{array} \left\lvert\, \begin{array}{lll}
\frac{1}{2}=\frac{3}{6} & \frac{3}{5}=\frac{3}{10} & \frac{3}{4}=\frac{1}{16} \\
\frac{3}{7}=\frac{9}{7} & \frac{3}{7}=\frac{12}{6}=\frac{5}{10}
\end{array}\right.
$$

Make equal fractions.

Key to Fractions ${ }^{\circ}$ workbooks

Book 1: Fraction Concepts
Book 2: Multiplying and Dividing
Book 3: Adding and Subtracting
Book 4: Mixed Numbers
Answers and Notes for Books 1-4 Reproducible Tests for Books 1-4

Also available in the Key to...* series
Key to Decimals ${ }^{\circ}$
Key to Percents ${ }^{\circ}$
Key to Algebra*
Key to Geometry ${ }^{\circ}$
Key to Measurement ${ }^{\circ}$
Key to Metric Measurement ${ }^{\circ}$
The Key to Tracker, the online companion for the
Key to Fractions, Decimals, Percents, and Algebra workbooks

