

TABLE OF CONTENTS

Adding, Subtractling, Multiplying, Dividing Review 1
Checking Accounts 4
Rounding Off 9
A Method for Rounding Off Decimal Numbers 12
Rounding Off with Division 14
Unit Prialng 16
Estimating with Addition and Subtraction 18
Averages 20
Number Line Averaging 21
Bar Graph Averaging 22
Averages in Sports 23
Test Averages 27
Length in the Metric System 28
ChangIng Units of Length 32
Word Problems wilth Metric Lengths 33
Powers of Ten 34
Scientific Notation 35
Extending Sclentific Notation 36
Sclentific Notation with Calculators 39
Word Names for Lärge Numbers 41
DecImal Numbers in Libraries 42
Practice Test 44

About tho Covor:

In his 1585 essay on decimal fractions, Simon Stevin advocated that "all measures-ilnear, Ilquild, dry, and monetary-be divided equally" Into units, tenths, hundredthe, and so on, based on the concept of decimal fractions, Although other scholars were siow to see the importance of Stevin's work, the idea finally caught fire. In the four hundred years since their Invention by Stevin, decimal numbers have become the standand in the international language of science and commerce.

Two hundred years after the pubilcation of Stevin's work, the Continental Congress of the newiy formed United States adopted the use of the decimal system in coinage, dividing the doilar (unit) Into dimes (tenths) and cents (hundredths).

At roughiy the same time, also inspired by a revolutionary spirit, the French created the matric system of maasure, with all units based on divisions and multiples of ter. The metric system, known formally as the Système Intemational d'Unités (S.l), has become the worldwide standard of measurement. While the United States still uses the old Engllsh system, matric measurements are often found in stores, factories, offices, and schools.

Metric units have replaced Engilsh units in laboratorles and scientific work.

In the last decade, calouiators, computers and other inatruments with digital displays have become commonplace. All of these devices display quantities less than one using decimal fractions instead of common fractions. Many use decimal numbers in selentific notation to display large numbers as weil. As time goes on, it becomes more and more impprtant to be able to understand and use deoimals.

On the cover of thls bookiet, Dr. Sandra Faber, an astronomer at the University of California at Santa Cruz, works In the observation room of the Llok Observatory on Mt. Hamilton outside San Jose, Cailf. Llke scientists throughout the world, Dr. Faber uses decimal numbers and the metric system of measurement in her calculations. Decimal natation is useful for expressing the very large numbers used in astronomy as well as for expressing very small numbers. Since astronomers around the world share infor. mation continuously, it is important that they share a common system of calculation and measurement.

> IMPORTANT NOTICE: This book is sold as a student workbook and is not to be used as a dupllcating master. No part of this book may be reproduced in any form without the prior written permission of the publisher. Copyright infringement is a violation of Federal Law.

[^0]ISBN 978-0-913684-24-5

Adding, Subtracting, Multiplying, Dividing Review

Add or subtract. Be sure to line up the decimal points.

1.6			
+2.4	6.5	12.04	6.4

$12.2+17.1=$
$92.46-7.2=$
$14.6-1.83=$

$17.5+6=$
$9-.3=$

Multiply. Remember, the total number of decimal digits in the factors equals the number of decimal digits in the product.

Dividing Review

Divide. When dividing by a whole number, the decimal point in the answer goes directly above the decimal point in the product.
$2 \longdiv { 2 . 8 }$
$3 \longdiv { 3 . 6 }$
$4 \longdiv { 4 . 4 }$
$4 \longdiv { 5 . 6 }$
$9.8 \div 2=$
$1.5 \div 3=$
$6.25 \div 5=$
$13.2 \div 12=$

When dividing by a decimal number, remember:

1. Count the decimal digits in the divisor.
2. Move both decimal points to the right that number of places. This gives you a whole number divisor.

$. 0 5 \longdiv { 1 . 5 0 }$
check
$. 0 2 \longdiv { 6 . 2 }$
check

| What is the sum of
 What is 15.08
 What is $12.4 ?$ | What divided
 divided by $2 ?$ |
| :--- | :--- | :--- |
| by $5 ?$ Be careful! | |

Checking Accounts

You probably have or someday will have a checking account in a bank. People write checks to avoid carrying large amounts of cash. You can use checks to pay bills and to pay for purchases at many stores.
Each time you write a check you must fill in five important items. Draw a line to match each item below with its place on the check.

When your check is cashed, your bank pays the person or business named on the check. Then the bank subtracts the amount of the check from your account.

Write checks for the two purchases below. Use today's date and your wn signature.

Store: Fantasy Record Store

Amount: \$29.95

Store: Broken Bicycle Shop Amount: \$183.42

Cнвев NuMER
234
Third National Bank Philadelphia, Pennsylvania

Date
18
\qquad DAY THE \qquad 3

Dollars

SPECDMEN
 140233m0254:

Be caraful filling in this line. stuly check number
233.

Third National Bank
Philadelphia, Pennsylvania

DATE \qquad 19 \qquad
\qquad DOLLARE

Each time you write a check, you must compute and record your checking account balance. The balance is the amount of money that you currently have in your account. If you don't keep track of your balance, you may accidentally write a check for more money than you have in your account and your check will bounce!
Some checks have stubs attached to help you keep track of your balance. You tear off the check and keep the stub.
Study the first check and its stub. Then finish filling in the second check and its stub. Subtract to find the new balance.

Continue the series of checks for the purchases and bills shown. Fill quit both the check and the check stub. The starting balance on check umber 238 is $\$ 347.22$. The starting balance on each following check is the ending balance from the check before it.

Store: Flash Fashions, Inc. Amount: \$32. 15
 Amount: $\$ 107.83$.

The starting balance on check 239 is the erding balancs on cheek 238.

Won's Restaurant		
Soup	3	50
Fried Rice	4	60
Sweet 6 Sour Chicken	9	85
	Subtotal	17
Tax	1	05
Total	19	03

Muddy Water Co. Phila., PA 19139

METER READINGS

Month Start	73946
Month End	78421
You Used	4475

You pay \$12. 68

Third National Bank
Philadelphia, Pennsylvania 18
 \qquad s . Dollars

SPRGロMEN

When you put money into your account you make a deposit. Deposits make your balance go up. Record a deposit of $\$ 50$ on the stub of check number 241. Then add to find the total.

You should finish with a balance of $\$ 225.53$. If you don't finish with this balance, go back to check number 238 and hunt for your mistake.

Rounding Off

(b) Locate each decimal number on the number line.

Write the whole number that is closest to each decimal number.

$1.7 \approx$
3.6 *
$3.4 \approx$
$6.0 \approx$
3.1 \#
$6.2 \approx$
$0.3 \approx$
$4.9 \approx$ $5.2 \approx$

Locate each decimal number on the number line.

Round off each number to the nearest tenth.

$2.81 \approx$
2.53 *
$2.77 \approx$
$2.66 \approx$
$2.98 \approx$
$2.87 \approx$
$3.01 \approx$

Round off each decimal number to the nearest whole number. Circle the correct answer. Draw a number line if you need help deciding which whole number is closest.

Round to the nearest tenth. Circle the correct answer.

Round to the nearest hundredth. Circle the correct answer.

A Method for Rounding Off Decimal Numbers

Here is a simple method you can use to round off decimal numbers:

> Step 1 Find the place you are rounding off to and underline the digit in that place.

Step 2 Circle the next decimal digit. Round to the nearest tenth.

$$
7.32 \approx \quad 5.264 \approx
$$

$7.3(2) \approx$
$5.2(6) 4 \approx$

Step 3 If the circled digit is $0,1,2,3$, or 4 , then the underlined digit stays the same.
If the circled digit is $5,6,7,8$, or 9 , then add one to the underlined digit. Round to the nearest tenth. All your answers should have one decimal digit.

Round off to the nearest whole number. Underline the digit in the ones place (2and circle the digit in the tenths place. Then round off. All answers should be whole numbers.
6.(4) $4 \approx 7$.
3.72 \%
8.3 ~
2.6 \%
13.5 *
2.1 ~
$2.5 \approx$
25.2 \%
14.73 \%
53.25 \%
0.9%
$321.764 \approx$
9.9 \%
.9 \%

Round off to the nearest hundredth. All answers should have two decimal digits.
$1.12(5) \approx 1.13$
1.394 *
$6.257 \approx$
$6.891 \approx$
0.6666 \%
5.125 \%
$17.49712 \approx$
$22.145 \approx$
5.99999 *
(23R2 Round off to the nearest thousandth. All answers should have \qquad decimal digits.
$1.615(4) \approx 1.615$
2.2645%
8.33333 ※
$20.6897 \approx$
$6.0003 \approx$
.012843 \%
Round off to the nearest:

whole number	$12.375 \approx$	$0.714285 \approx$
tenth	$12.375 \approx$	$0.714285 \approx$
hundredth	$12.375 \approx$	$0.714285 \approx$
whole number	3.14159%	$2.7182818 \approx$
tenth	$3.14159 \approx$	$2.7182818 \approx$
hundredth	$3.14159 \approx$	$2.7182818 \approx$
thousandth	$3.14159 \approx$	$2.7182818 \approx$
ten thousandth	$3.14159 \approx$	$2.7182818 \approx$

Rounding Off with Division
Sometimes, when you divide, you do not need an exact answer. An answer close to the exact answer is good enough. You can divide and round off to find a close answer.

Find each answer below to the nearest whole number. To find an answer to the nearest whole number, you must divide until you find the tenths digit. Then use the tenths digit to round off to the nearest whole number.

$$
17 \div 3 \approx 6
$$

$22 \div 5 \approx$
Divide

Round Off
$27 \div 4 \approx$
Divide
Round Off

Divide $\quad 21 \div 6 \approx$ Round Off

Round Off

Divide
$75 \div 4 \approx$

Find each answer to the nearest tenth. Divide until you find the hundredths digit, and then round off to the nearest tenth.

	$2 \div 3 \approx$	Round Off	Divide
$3 \longdiv { 2 . 0 0 }$			

$8 \div 3 \approx$

Divide

Round Off
$7.5 \div 2 \approx$
Divide

Round Off
(6) ind each answer to the nearest hundredth.

$3 \div 7 \approx .43$	$5 \div 6 \approx$	
Divide Round Off	Divide	Round Off
$\begin{array}{ll} \frac{.428}{73.000} & .428 \\ -28 & \approx .43 \end{array}$	$\sqrt{5}$	
20		
-14		
60		
$-\frac{56}{4}$		
(Make sure youmake mos $1 \div 8 \approx$		
Divide Round Off	Divide	Round Off

Unit Pricing

Find each answer below to the nearest cent. Since cents are hundredths of a dollar, you must divide until you find the thousandths digit. Then round off.

Betsy bought four donuts for $\$.75$.	Lee bought a box of 8 pens for $\$ 3.49$.
Each donut cost about how	

Each donut cost about $\$.19$.
Each pen cost about \$ \qquad .

Nathaniel bought a six-pack of root beer for $\$ 2.98$. Each can cost about how much?

Susan bought a package of gum with 5 sticks for $\$$.29. Each stick cost about how much?

Each root beer cost about \$ \qquad .

Each stick cost about \$ \qquad
Undershirts are sold in packages with
three shirts to a package. Terry bought a package for $\$ 17.99$. Each undershirt cost about how much?

Each undershirt cost about \$ \qquad .

Dana needs to buy some dog food for her dog Spot. She needs to decide which bag to buy.
Find each answer below to the nearest cent.
(2) per blade

How much does each kilogram cost in the regular size bag?
\$___ per kg
Which bag should Dana buy?
Willie needs to buy razor blades so he can shave. Help him decide which pack is a better deal.

How much for each blade in

How much does each kilogram cost in the giant size bag?

regular / giant
the small package?

Which pack should Willie buy?

How much for each blade in the large package?

\$ \qquad per blade

Estimating

Rounding off can help you make a guess close to the answer to a problem. Making a close guess is called estimating.
Round off each decimal to the nearest whole number. Then add or subtract the whole numbers to estimate the answer.

Estimate each answer below to the nearest whole number.

$1 .(4)+3 .(8) \approx 5$ $1+4$	$7.2+1.9 \approx$	$3.2+4.3 \approx$
$7.2-3.4 \approx$	$8.0-3.1 \approx$	$8.0-3.8 \approx$
$17.437+2.8 \approx$	$32+4.032 \approx$	$16-7.2 \approx$
$20.1+20.2 \approx$	$90.1+10.9+7.2 \approx$	$36+36.2 \approx$
$2.46+7 \approx$	$3.6+4.492+1.8 \approx$	$92.1-92 \approx$

Round off each price to the nearest dollar. Then add to estimate the total cost of the items.

Gretchen went to the grocery store. Estimate the cost of the items in her cart.

Estimate the amount Gretchen spent. \$ \qquad

Next time you go to the supermarket, estimate the cost of the items in your cart before the clerk adds them up. See how close your estimate came to the actual total.

Julio drove from San Francisco, CA to Bolse, ID. He bought gas three times spending $\$ 9.12, \$ 18.42$, and $\$ 12.79$. Estimate Julio's gas expense.

Frankie and Annette went to the drive-in. Frankie had a burger ($\$ 1.89$), onion rings ($\$.89$) and a cola (\$.49). Annette had a hot dog (\$1.29) and a shake (\$1.09). Estimate how much they spent.

Julio spent about \$ \qquad on gas.

$\$ 649.99$

The Gomez family bought new kitchen appliances. Estimate the total cost.

They spent about $\$$ \qquad .

The appliances cost about \$ \qquad .

Averages

To find the average of a group of numbers:

1. Add to find the sum of the numbers in the group.
2. Divide the sum by how many numbers are in the group.

Find each average below.
Average: . 6 and 1.0

Average: . $9, .5$ and 1.0

The average is .8 .
Average: $0.4,0.3,0.7$, and 0.2
The average is \qquad .

Average: 1.9 and 2.7

The average is \qquad .

Average: 1.4, 2.2 and 3.

The average is \qquad .

The average is \qquad

Number Line Averaging
(4ocate each number on the number line. Add and divide to find the average. Then locate the average on the number line.

Average: 5.2 and 6.4

Average: 1.4 and 3
Average: 2.4, 3.5, 4.1, and 4.4

Average: 5, 8.1 and 13.6

Average: 3, 4, 5, and 10

Bar Graph Averaging

Graph the information in each problem. Add and divide to find the average. Then draw a line to show the average.

The rainfall for July, August and September was 2.5, 3.8 and 0.6 centimeters. What was the average rainfall?

I sabella is growing a bean plant for her science class. In the first four weeks it grew 0.9, 1.2, 1.9 and 1.6 cm . What was the average growth?

Ch ida is a basketball coach. Help her figure out the scoring averages for some of the players on her team.

Annabel played in 8 games. She scored 6, 11, 3, 1, 7, 13, 5, and 6 points. What was her average?

Liz played in only 4 games. She scored $14,15,9$, and 16 points. What was her average?

Annabel averaged 6.5 points.
Monica played in eight games. She scored 8, 7, 21, 12, 10, 13, 15 , and 8 points. What was her average?

Betsy is very good at defense. She played in five games. She scored 2, 5, 4, 1, and 4 points. What was her average?

Monica averaged \qquad points.

Betsy averaged \qquad points. Which player had the highest average? \qquad
Which player scored the most total points?
Which player scored the most points in one game?

To find a baseball player's batting average, you divide the number of "hits" by the number of "at bats." Then you round off to the nearest thousandth.

Player	At Bats	Hilts	Average
Sam	14	5	.357
Roberto	30	10	
Rocky	25	6	
Willie	22	7	
Fred	21	6	

Sam	6351
	$\frac{145575}{5000}$
	-42
	80
	- 70
	-98
	20
	$\frac{14}{6}$

Sam's average
is .357.

Rocky

Rocky's average
Willie

Roberto's average is

Fred

is

Which player had the most hits?

Which player had the highest average?

Fred's average
is \qquad
\qquad .
tne most hits?

Willie's average
is \qquad .

Rogers Hornsby, who played for the St. Louis Cardinals in 1924, Find the best seasonal average in -ite modern history of major league baseball. Hornsby had 227 hits in 536 times at bat. What was his average?

Suppose you were a perfect baseball hitter. You got a hit every time you came to bat. If you had 536 at bats and got 536 hits, what would your average be?

Suppose you never got a hit. You came to bat 536 times but got 0 hits. What would your average be?

Rogers Hornsby's average was in 1924.

If you were perfect your average would be \qquad

If you never got a hit your average would be \qquad .
he Great Hope High School giris' softball team is playing in the league championship game. Five girls have not yet played in the game and are waiting for their chance to play. Below is a table with their names and batting averages. Estimate the location of each average on the number line.

	Average
Lucia	.203
Monica	.368
Viki	.401
Toby	.278
Ada	.310

Suppose it was the last inning of the game, the score was tied, the bases Tere loaded, and there were two outs. Tonia, who was supposed to bat, fiurt her hand. Among the five girls waiting to play, who has the best chance of getting a hit to win the game?

Decimal numbers are used to score gymnastic events. Each judge gives a score from zero to ten. (Ten is perfect.) Then the scores are averaged to determine the final score. Find the average then round to the nearest hundredth to determine each final score in the balance beam competition.

						Nalla 8.17 .97 .57 .6 Final Score Sco					
	8.5	8.8	9.1		8.9	Nellie	9.5	9.1	9.7		

(2) Rodriguez gave her math class 5 tests. Find each student's average rounded to the nearest whole number. Then fill in the "Average" column in Ms. Rodriguez's gradebook.

Jeff \qquad $85.6^{-850888}$ 5428.0 $-\frac{40}{28}$ $\frac{-25}{30}$ $-\frac{30}{0}$	Rose
Jeff's average is 86 \qquad 0	Rose's average is
Terry	Maria

Terry's average is \qquad
Ivan

Maria's average is \qquad

Which student had the highest average?

Which student had the best single test?

Ivan's average is \qquad

Length in the Metric System

The meter is the standard unit for measuring lengths in the metric system.

Circle the most reasonable answer.

Use the scale on the drawing to help you picture each length.
Length of a dog's tail:
.3 m
Length of a city block:
$\frac{.8 \mathrm{~m}}{} \quad 8 \mathrm{~m}$
$\frac{.5 \mathrm{~m}}{\text { Distance across a street: }}$

.12 m	1.2 m	12 m
Height of an adult:		
.17 m	1.7 m	17 m

Length of a bed:

20 m (Way top
Height of a chair
$.9 \mathrm{~m} \quad 9 \mathrm{~m} \quad 90 \mathrm{~m}$

Height of a window:
$1.3 \mathrm{~m} \quad 13 \mathrm{~m} \quad 130 \mathrm{~m}$

Distance from the floor to the ceiling:
$.25 \mathrm{~m} \quad 2.5 \mathrm{~m} \quad 25 \mathrm{~m}$

Height of a skyscraper:

| $.75 \mathrm{~m} \quad 7.5 \mathrm{~m}$ | 75 m |
| :--- | :--- | :--- |
| Height of a toaster: | |

Height of a toaster:
17 m

Small lengths are measured in centimeters millimeters.

A meter is divided into 100 equal parts to make centimeters (cm).
$100 \mathrm{~cm}=1 \mathrm{~m}$ or $1 \mathrm{~cm}=.01 \mathrm{~m}$
The head of a thumbtack is about one one centimeter across.

A centimeter is divided into 10 equal parts to make millimeters (mm).
A flea might be one millimeter tall.
$10 \mathrm{~mm}=1 \mathrm{~cm}$ or $1 \mathrm{~mm}=.1 \mathrm{~cm}$

Circle the reasonable answer. Use the scale on the drawing to help you picture each length.
Height of a child:
1 mm 1 cm 1 m
Width of a fingernail:
$1 \mathrm{~mm} \quad 1 \mathrm{~cm} \quad \mathrm{~lm}$
Height of a flea;
$1 \mathrm{~mm} \quad \mathrm{lcm} \quad \mathrm{lm}$
Length of a paper clip:
$3 \mathrm{~mm} \quad 3 \mathrm{~cm}$
3M
Length of an ant:
4 mm 4 cm 4 m
Height of a telephone pole:
$15 \mathrm{~mm} \quad 15 \mathrm{~cm} \quad 15 \mathrm{~m}$
Length of a big snake:
$1.9 \mathrm{~mm} \quad 1.9 \mathrm{~cm} \quad 1.9 \mathrm{~m}$
Length of a candy cane:

	$9.1 \mathrm{~mm} \cdot 9.1 \mathrm{~cm}$	9.1 m
Height of a tricycle: .5 mm$\quad .5 \mathrm{~cm}$.5 m	
Height of a giraffe:		

6.2 mm
6.2 cm
6.2 m

Height of a milk carton: $29.2 \mathrm{~mm} \quad 29.2 \mathrm{~cm} \quad 29.2 \mathrm{~m}$

Length of a shoebox:
$.25 \mathrm{~mm} \quad .25 \mathrm{~cm} \quad .25 \mathrm{~m}$

As you can see on the ruler below, ten millimeters make one centimeter ($10 \mathrm{~mm}=1 \mathrm{~cm}$). You can measure any length in meters, centimeters, or millimeters. The pencil below is about 130 mm or 13 cm long. Measured with a meter stick, this pencil is about .13 m long.

Circle each reasonable answer in millimeters, centimeters and meters.

Length of a pencil:	millimeters centimeters meters	$\begin{array}{r} .013 \\ .013 \\ .013 \end{array}$	$\begin{array}{r} .13 \\ .13 \\ 13 \end{array}$	$\begin{aligned} & 1.3 \\ & 1.3 \\ & 1.3 \end{aligned}$	$\frac{13}{13}$	$\begin{aligned} & 130 \\ & 130 \\ & 130 \end{aligned}$	$\begin{aligned} & 1300 \\ & 1300 \\ & 1300 \end{aligned}$
Length of a carrot:	millimeters centimeters meters	$\begin{aligned} & .015 \\ & .015 \\ & .015 \end{aligned}$	$\begin{aligned} & .15 \\ & .15 \\ & .15 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 1500 \\ & 1500 \\ & 1500 \end{aligned}$
Length of a key:	millimeters centimeters meters	$\begin{aligned} & .05 \\ & .05 \\ & .05 \end{aligned}$	$\begin{aligned} & .5 \\ & .5 \\ & .5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$	5000 5000 5000
Length of a paper clip:	millimeters centimeters meters	$\begin{aligned} & .033 \\ & .033 \\ & .033 \end{aligned}$	$\begin{aligned} & 33 \\ & .33 \\ & .33 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 33 \\ & 33 \\ & 33 \end{aligned}$	$\begin{aligned} & 330 \\ & 330 \\ & 330 \end{aligned}$	$\begin{aligned} & 3300 \\ & 3300 \\ & 3300 \end{aligned}$
Length of a softball bat:	millimeters centimeters meters	$\begin{aligned} & .008 \\ & .008 \\ & .008 \end{aligned}$	$\begin{aligned} & .08 \\ & .08 \\ & .08 \end{aligned}$	$\begin{aligned} & .8 \\ & .8 \\ & .8 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 800 \\ & 800 \\ & 800 \end{aligned}$

Large distances are measured in kilometers (km). There are 1000 meters in (3) kilometer.

It takes Vernon about
15 minutes to walk one kilometer to school.

San Francisco is about
4700 km from New York.

$1000 \mathrm{~m}=1 \mathrm{~km}$ or $1 \mathrm{~m}=.001 \mathrm{~km}$
Circle the reasonable answer.

Height of a tall person:
$1.9 \mathrm{~m} \quad 1.9 \mathrm{~km}$
Distance around the earth:
$38,600 \mathrm{~m} \quad 38,600 \mathrm{~km}$
Length of a school bus:
$12.7 \mathrm{~m} \quad 12.7 \mathrm{~km}$
Height of world's tallest mountain:

$8900 \mathrm{~m} \quad 8900 \mathrm{~km}$

Height of a tall tree:

87.2 m	87.2 km

$41,600 \mathrm{~m}$	$41,600 \mathrm{~km}$

Height of world's tallest building:

Length of a soccer field:

$$
100 \mathrm{~m} \quad 100 \mathrm{~km}
$$

Length of a large ocean freighter:
$35 \mathrm{~m} \quad .35 \mathrm{~km}$
Length of a short footrace:
$75 \mathrm{~m} \quad 75 \mathrm{~km}$
Height of world's tallest mountain: 8.9 m
8.9 km

Height of a tall tree:
$.0872 \mathrm{~m} \quad .0872 \mathrm{~km}$
Length of a marathon footrace:
$41.6 \mathrm{~m} \quad 41.6 \mathrm{~km}$

Height of world's tallest building:

.45 km

Changing Units of Length

Changing units of length in the metric system is easy. To change to smaller units you multiply by 10,100 or 1000 . To change to larger units you multiply by . $1, .01$ or . 001 .

Find an equal length.

Word Problems with Metric Lengths

Jim was 1.66 m tall last year. In one year he has grown .14 m . How tall is he now?

Belinda is 1.84 m tall. Her sister Keola is 1.42 m tall. How many meters taller is Belinda?

Belinda is \qquad m taller.
How many centimeters taller is Belinda?

Belinda is \qquad cm taller.

Nancy has a piece of licorice 2 m long. She wants to divide it into eight equal pieces. How many meters long will each piece be?

Each piece will be \qquad m long. How many centimeters is that?

Susan was driving from Portland to Los Angeles, a distance of 1726 km. After driving 1061 km to San Francisco, she stopped for the night. How much farther is it to Los Angeles?

It is \qquad km farther.

Dad drove 470 km from St. Louis to Chicago. Then mom drove 670 km from Chicago to Toronto. How far did they drive together?

They drove \qquad km.

A relay race has teams of four people. Each person runs 400 m . How many kilometers does each person run?

Each person runs \qquad km.
How many meters does each team run?

Each team runs \qquad m.

How many kilometers does each team run?

It is \qquad cm.

Each team runs \qquad km.

Powers of Ten

Our number system is based on powers of ten. The numbers 10,100 , $1000, \ldots$ are all powers of ten.
Complete the table.

Standard Form	Factored Form	Power Form	Words
10	10	10^{1}	ten to the first power
100	10×10		ten to the second power
1000			
	$10 \times 10 \times 10 \times 10$		
		10^{5}	
$1,000,000$			
$10,000,000$			

Multiplying decimal numbers by a power of ten is easy. You simply move the decimal point. The power of ten tells you how far. You may need to use zeros as placeholders.

$6.2 \times 10^{2}=620$.
Move decimal point
2 places right.

$3.1415 \times 10^{1}=$
$6.4 \times 10^{3}=$
$1.4 \times 10^{5}=$
$7.32 \times 10^{6}=$
$9.7 \times 10^{4}=$
$6.02 \times 10^{23}=$

Scientific Notation

(1) e earth is about $150,000,000 \mathrm{~km}$ from the sun and about $384,000 \mathrm{~km}$ from the moon. The closest star (other than the sun) is Proxima Centauri. It is about $41,000,000,000,000 \mathrm{~km}$ from earth. Scientists often write large numbers like these in scientific notation.

$$
\begin{aligned}
& \text { Number betwean Inad 108 Cower fio } \\
& 150,000,000=1.5 \times 10^{8} \\
& 384,000=3.84 \times 10^{5} \\
& 41,000,000,000,000=4.1 \times 10^{13}
\end{aligned}
$$

A number in scientific notation is written as the product of a number between one and ten and a power of ten.

Scientific notation is useful because large numbers don't take up as much space when written in scientific notation.
Here is a simple way to write large numbers in scientific notation:

Step $1237,000,000=2.37$

Step $2 \quad 237,000,000=2.37 \times 10^{8}$ 2.37000000 The decimal paint wauld move cight places.

Use the digits at the left end of the number to write a decimal number between 1 and 10 . You don't need to include the string of zeros.

Count how many places you would need to move the decimal point to make the large number. That gives you the power of ten to multiply by.

Write each number below in scientific notation.
$67,200=6.72 \times 10^{4}$
$14,300=$
$37,400,000=$
$8,600,000=$
$521,000=$
$47,000=$
$12,000,000,000=$
$0,400,000,000,000=$
$2,000,000,000,000,000,000=$
$29,000,000=$ $2,900,000=$
$290,000=$ $70,000=$
$1642=$
$16.42=$

Extending Scientific Notation

Scientific notation can be used to express very small decimal numbers also.
See if you can find the pattern and complete the problems below.

$3.47 \times 10^{6}=3,470,000$	$8.2314 \times 10^{6}=$
$3.47 \times 10^{5}=$	$8.2314 \times 10^{5}=$
$3.47 \times 10^{4}=$	$8.2314 \times 10^{4}=$
$3.47 \times 10^{3}=$	$8.2314 \times 10^{3}=$
$3.47 \times 10^{2}=$	$8.2314 \times 10^{2}=$
$3.47 \times 10^{1}=34.7$	$8.2314 \times 10^{1}=$
$3.47 \times 10^{0}=3.47$	$8.2314 \times 10^{0}=$
$3.47 \times 10^{-1}=.347$	$8.2314 \times 10^{-1}=$
$3.47 \times 10^{-2}=.0347$	$8.2314 \times 10^{-2}=$
$3.47 \times 10^{-3}=$	$8.2314 \times 10^{-3}=$
$3.47 \times 10^{-4}=$	$8.2314 \times 10^{-4}=$
$3.47 \times 10^{-5}=$	$8.2314 \times 10^{-5}=$
$3.47 \times 10^{-6}=$	$8.2314 \times 10^{-6}=$

Multiply. Look at the problems above if you get stuck.
$2.89 \times 10^{-3}=$
$6.4 \times 10^{-2}=$
$4.3 \times 10^{-8}=$
$4.32 \times 10^{-5}=$
$7.7 \times 10^{-10}=$
$2.72 \times 10^{-6}=$
$1.43 \times 10^{-1}=$
$3.6 \times 10^{\circ}=$

Multiply to rewrite each number in standard form.
$7.4 \times 10^{3}=$
$8.1 \times 10^{2}=$
$3.16 \times 10^{4}=$
$1.6 \times 10^{5}=$
$4.253 \times 10^{9}=$
$5 \times 10^{7}=$
$2 \times 10^{6}=$
$8.5 \times 10^{12}=$
$7.4 \times 10^{-3}=$
$8.1 \times 10^{-2}=$
$3.16 \times 10^{-4}=$
$1.6 \times 10^{-3}=$
$4.253 \times 10^{-9}=$
$5 \times 10^{-7}=$
$2 \times 10^{-6}=$
$5.73 \times 10^{-10}=$

Rewrite each number below in scientific notation. Use the left or right (27igits to form a number between one and ten. Then count how many places you need to move the decimal point to find the power of ten.

Large Numbers
Small Numbers
$1400=$
$42,900=$
$1,610,000=$
$519=$
$7000=$
$100,000=$
$10,000=$
$1000=$
$100=$

$$
\begin{aligned}
& .0014= \\
& .000429= \\
& .00000161= \\
& .0519= \\
& .007= \\
& .00001= \\
& .0001= \\
& .001= \\
& .01=
\end{aligned}
$$

Rewrite each number below in standard form.

In space light travels about 2.98×10^{5} kilometers in one second. That means light travels one kilometer in 3.36×10^{-6} seconds.
$2.98 \times 10^{5}=$
$3.36 \times 10^{-6}=$

In one year light travels 9.46×10^{12} kilometers. Astronomers call this distance a light-year. A light-year is so far that it is not useful for measuring distances here on earth. A soccer field is about 1.1×10^{-14} light -years long. It's easier to say 100 meters.
$9.46 \times 10^{12}=$
$1.1 \times 10^{-14}=$

Proxima Centauri, the closest star other than the sun, is about 4.3 light-years or 4.1×10^{13} kilometers from earth. Sirius, the brightest star in the night sky, is about 8.1×10^{13} kilometers away.
$4.1 \times 10^{13}=$
$8.1 \times 10^{13}=$

On a clear night, far from city lights, you might see 3.5×10^{3} stars without a telescope. In our galaxy, the Milky Way, there are about 1.4×10^{11} stars. Astronomers estimate that there may be 10^{22} stars in the entire universe.
$3.5 \times 10^{3}=$
$1.4 \times 10^{11}=$
$10^{22}=$

The diameter of the moon is about 3.48×10^{3} kilometers. The diameter of the earth is about 1.28×10^{4} kilometers. The diameter of the sun is more than 100 times the diameter of the earth. It is about 1.39×10^{6} kilometers.
$3.48 \times 10^{3}=$
$1.28 \times 10^{4}=$
$1.39 \times 10^{6}=$

Earth's atmosphere is composed primarily of two gases, oxygen and nitrogen. These gases consist of tiny particles called molecules. One oxygen molecule weighs about 5.32×10^{-23} grams. One nitrogen molecule weighs about 4.65×10^{-23} grams.

$$
\begin{aligned}
& 5.32 \times 10^{-23}= \\
& 4.65 \times 10^{-23}=
\end{aligned}
$$

The earth is about 4.6×10^{9} years old. Scientists estimate that the universe is about 1.5×10^{10} years old.
$4.6 \times 10^{9}=$
$1.5 \times 10^{10}=$

Scientific Notation with Calculators

(2) me calculators have a special key for expressing numbers in scientific notation. It usually looks like this: EXP or EE]. EXP is short for exponent. In 3.2×10^{4}, the 4 is called an exponent. A calculator with an exponent key is called a scientific calculator. Scientific calculators usually have many more buttons than regular calculators.
Scientific calculators display scientific notation without a multiplication sign followed by a space and the exponent. The exponent indicates the power of ten that you must multiply by. What number is represented by each calculator display below?

$3.204=3.2 \times 10^{4}=32000$.

$2.7-04)=$

$5.603)=$
$7.3104=$

$3.475-12=$

If you have a scientific calculator with an exponent button, do the rest of this page and the next page.
If your calculator doesn't have an exponent button, skip them or do them later when you can use a scientific calculator.
Use your calculator to multiply and divide. Copy exactly what appears on the display. Don't guess.

Some of the answers surprised you, that's because your calculator switched to scientific notation when the answer became very large or very small. Most calculators can't display numbers with more than eight digits (larger than 99999999 or smaller than 0.000001) in standard form.

Use your scientific calculator to multiply. Copy the display exactly.

Use your scientific calculator to multiply. Express each answer as it appears on the calculator's display. It will be in scientific notation.

Word Names for Large Numbers

derline each number that appears in the magazine article below.

HUMANS HAVE BEEN ON EARTH A SHORT TIME

Human beings have been on the earth for only a short part of the earth's history, according to biologist Dr. Sharona Barzilay. The earth itself is 4,6 billion years old. About 3.5 billion years ago the first forms of life appeared in the oceans. Multicelled organisms came into existence about 3.0 bllition years ago.
It was only about 600 million years ago that large sea creatures were to be found in the earth's oceans. The first airbreathing animals emerged onto land about 350 million years ago.

Huge dinosaurs first roamed the earth about 200 million years ago. The oldest primates (ancestors of monkeys, apes and humans) developed about 40 million years ago.

The earliest indications of human-like creatures are 3.6 million year old footprints that have been discovered in Africa.
"So you see," says Barzilay, "human beings have inhabited the earth for less than a thousandth of the planet's existence. That's not very long."

Cow write each number in three ways.

Age of:

$$
1 \text { billion }=1,000,000,000 \quad 1 \text { million }=1,000,000
$$

Decimal Numbers in Libraries

Some libraries use the Dewey Decimal System to organize their shelves. Each book has a decimal number written on its spine. The number identifies the subject of the book.

$000-099$ General	$100-199$ Philosophy	$200-299$ Religion	$300-399$ Social Science	$400-499$ Language
$500-599$ Pure Science	$600-699$ Technology	$700-799$ Art	$800-899$ Literature	$900-999$ History

Books are placed on the shelves in the order of their numbers. Higher numbers are placed to the right and lower numbers to the left, just as they are on a number line.
Marilyn wrote a report on the Civil War. She borrowed six books from the library. When she was finished, she placed the books in the book return bin. Jack wrote a report on sports. When he finished his research, he put his books in the return bin also.

You are the librarian's assistant. Your job is to replace the returned books pack on the shelves where they belong. Show where Marilyn's and Jack's Caks belong on the shelves below. Write the correct name and Dewey Decimal Number on each blank book. You might want to cut out the books on page 42. Then you can arrange them before you start writing.

Name \qquad Date \qquad
Write a check for $\$ 25.43$ to Cost More Foods for groceries. Then fill out the stub.
\square
Round off to the nearest whole number.
$3.7 \approx$
$4.85 \approx$
6.1 \%
$17.6342 \approx$

Find the answer to the nearest hundredth.

$$
11 \div 6 \approx
$$

Round off to the nearest tenth.

$$
7.61 \approx \quad 2.361 \approx
$$

7.65 *
$2.4259 \approx$
Bonzo bought 6 bananas for $\$ 1,35$. Estimate the cost of each banana to the nearest cent.

Each banana cost about \$ \qquad .
Round off each number to the nearest whole number. Then add or subtract to estimate the answer.
8.09
2.62
2.643
$+3.19$
$+5.7$
22.7
-15.46
23.4 cm of rain fell one month and 27.7 cm fell the next month. Find the average to the nearest tenth.

The average rainfall was \qquad cm.

Find an equal length.
$1 \mathrm{~m}=$ \qquad cm

The average is \qquad .

Circle the reasonable answer.
(fey $)$ deepest point in the Pacific Ocean:
$11 \mathrm{~mm} \quad 11 \mathrm{~cm} \quad 11 \mathrm{~m} \quad 11 \mathrm{~km}$
Length of a fork:

$17.2 \mathrm{~mm} \quad 17.2 \mathrm{~cm} \quad 17.2 \mathrm{~m} \quad 17.2 \mathrm{~km}$

Length of a car:

$$
3.5 \mathrm{~mm} \quad 3.5 \mathrm{~cm} \quad 3.5 \mathrm{~m} \quad 3.5 \mathrm{~km}
$$

Thickness of a quarter:
$1.5 \mathrm{~mm} \quad 1.5 \mathrm{~cm} \quad 1.5 \mathrm{~m} \quad 1.5 \mathrm{~km}$

Write each number in standard form.
$5.62 \times 10^{4}=$
$8.71 \times 10^{-2}=$
$3.2 \times 10^{6}=$
$3.2 \times 10^{-6}=$

Write each number in scientific notation.
$2,100,000=$
$.00021=$
$47,000,000=$
$.0000028=$

Key to Decimalsº workbooks

Book 1: Decimal Concepts
Book 2: Adding, Subtracting, and Multiplying
Book 3: Dividing
Book 4: Using Decimals
Answers and Notes for Books 1-4
Reproducible Tests for Books 1-4

Also available in the Key to...* series

Key to Fractions ${ }^{\circ}$
Key to Percents ${ }^{\circ}$
Key to Algebra ${ }^{\circ}$
Key to Geometry ${ }^{\circ}$
Key to Measurement ${ }^{\circ}$
Key to Metric Measurement ${ }^{\bullet}$
The Key to Tracker", the online companion for the
Key to Decimals, Fractions, Percents, and Algebra workbooks

Key Curriculum Press innovatons in mathematics enucation
((2) (1)

[^0]: Copyright © 1985 by Key Curriculum Project, Inc. Ali rights reserved.
 © © Key to Fractions, Key to Decimals, Key to Percents, Kay to Algebra, Key to Gaometry, Key to Measurement, and
 Key to Metric Measurement are registered trademarks of Key Curriculum Press.
 Published by Key Curriculum Press, 1150 65th Streat, Emeryville, CA 94608
 $\begin{array}{llllllllllllllllllll}\text { Printed in the Uniled States of America } & 33 & 32 & 31 & 30 & 29 & 13 & 12 & 11 & 10\end{array}$

